

 All Rights Reserved © 2018 IJERCSE 135

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 3, March 2018
Space Shooter Game

[1]
 Ansari Aaqib,

[2]
 Madhavi Jadhav,

[3]
 Megha Sudke,

[4]
 Vipul Gawad,

[5]
Vijaya Sagvekar,

[6]
 Vinod Sapkal

[1]
 BE Student PVPPCOE,

[2]
 BE Student PVPPCOE,

[3]
 BE Student PVPPCOE,

[4]
BE Student PVPPCOE,

[5]
Assistant professor PVPPCOE,

[6]
Assistant professor PVPPCOE

Abstract: - In our project we will be placed in a space setting. The player can control a spaceship at the start of the game and can be

changed during the game play. The player can move in 2 degree of freedom. There are three types of enemies like ships, asteroids

and boss. The enemy ships will have basic Artificial Intelligent system as they can change their paths while shooting in the direction

of the player. The asteroids will follow a straight line in any random direction. The boss will be a scaled up version of other types of

enemies which will stay at the screen until defeated.

Index Terms—Artificial Intelligence (AI), OpenWorld, Cross Platform.

Keywords— Space shooter, Game, Top-down shooter, OpenWorld, Unity3d, Artificial intelligence.

I. INTRODUCTION

The game must allow the player to play the game, save and

load the progress at any time, have score system to rate

player performance. The game will be divided into stages.

The Player can roam in an OpenWorld when not on a

mission. The player controls character movements over

obstacles, defeat enemies, reaching end goal to finish one

stage. Player character will loss a life or reduces its shields

when collided with enemies or lethal obstacles.

II.GAME ENGINE

In our project we selected Unity3D version 5.6 for

development of the project. Unity3D is a powerful cross-

platform 3D engine and it isuser friendly development

environment. Unity3D is a easy to understand so anybody

who want to easily create 3D games and application for

mobile, laptop, computer, web etc. create 3D games and

applications for mobile, desktop, the web and consoles.

A. MOVEMENT OF GAME

A. Movement in Mission

Movements in mission is designed in such a way that

confine the player to face forward towards the stage

progression and control the space required to design the

mission towards sure achievement if the player goes through

all the enemies.

Fig 1: Movement in Missions

B. Movement in OpenWorld

Movement in OpenWorld is given that user can travel in any

direction in a 2D plane.

Fig 2: Movement in OpenWorld

III.ENEMY BEHAVIOUR

The enemies will be coded with basic artificial intelligence

that can move towards enemies, some can ambiguity the

attacks of the player and change their course midway on the

playing area. The enemy can decrease player's health by

either shooting at him or colliding with him. In either case

the player's collider mesh will be affected by some other

colliders.

A. Algorithm

The player (green) movement is restricted to the X and Y

axis. Enemy (or enemies) is at the top of the screen, his

movement is also restricted to the X axis with a fixed speed

in Y axis to simulate movement towards the enemy. The

player fires bullets (yellow) at the enemy.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 3, March 2018

 All Rights Reserved © 2018 IJERCSE 136

Fig 3: Enemy Movement Behaviour

The screen is divided into discrete sections(light grey and

light blue) and assign weights to them. There are two

weights: The "bullet-weight" (dark blue) is the danger

imposed by a bullet. If a bullet exists in a section it will add

0.2 to the bullet weight. If multiple bullets is in the section

the bullet weight will multiply. The second weight is the

"distance-weight" (dark-green). The closer the bullet is to

the enemy, the higher the "distance-weight" (0.1,0.3,0.5).

Lanes without a bullet have a weight of 0.0.

Fig 4: Enemy Movement Calculations

The enemy will decide where to move based on where it is

located(Numbers in dark grey indicate its position). The

section enemy is located in is given the distance as "0". the

further away the section from the enemy is the distance is

increased by "1".

The enemy will calculate the minimum "bullet-

weight"+"distance-weight" and move towards the closest

section available to this minimum value.

In the fig4. the enemy moves to the right.

A) OPENWORLD

In players will be placed in handcrafted OpenWorld

environment which will make the player either travel the

area or can go to the next mission area. The player can come

across space stations or random trade ships to buy new

missiles or ships from in-game money gained during and

after completing a mission.

IV.COLLISISONS

In a game that focuses on shooting down enemies, or

avoiding being shot down, a system to handle collision is

vital. This section defines colliders, a way to detect colliding

objects, our perceptive behind collision in a space-shooter

game, results from the game, as well as a discussion about

what could have been done differently.

Collider components state the shape of an object for the

purposes of physical collisions. A collider, which is

invisible, need not be the exact same shape as the object‟s

mesh and in fact, a rough estimate is often more efficient

and indistinguishable in game play. The simple (and least

processor-intensive) colliders the so-called primitive

collider types. In 3D, there are the three types collider like

Box Collider, Sphere Collider and Capsule Collider. In 2D

technique, we can use the Box Collider 2D and Circle

Collider 2D

A. Using Colliders as ‘Colliders’

The default setting for any collider attached to an object is

to restrict the object being passed through be other world

objects. The collision event must be handled by a script

attached to one or both of the objects involved in the

collision. Unity has a built in function for detecting

collisions. This function in fig is attached to the Red Sphere.

Fig 5: Colliders as Colliders Example

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 3, March 2018

 All Rights Reserved © 2018 IJERCSE 137

Fig 6: Collider Implementation

B. Using Colliders as ‘Triggers’

Object collisions may be used to generate events „triggers‟

which can be used to update logic in the World, generate

actions, instantiate (create) new objects or remove unwanted

objects from the world. Using triggers is one way for the

player to collect items that update values via attached

scripts.

Fig 7: Colliders as Triggers Example

Fig 8: Trigger Implementation

V.LIGHT SETTINGS

There are many ways to represent light sources, common

ones being point lights, directional lights, spotlights, and

area lights. Both the spotlight, and the directional light

sources have defined directions, so when the light source is

in the middle of the plane, as in our game, they are not very

suitable; an omni directional light source would be

preferred. This leave the point light source and area light

sources as likely candidates.

A point light source is a light source where all the light

comes from an infinitely at a small point. This approximates

lighting from a light source that comes from an infinitely

either very small, or far away. However, when the light

source covers a larger area, a point light source might be too

imprecise, as it will not illuminate the surrounding objects

as well as a large light actually would (see Figure 3). An

area light source would solve this issue by simulating the

larger area, commonly using multiple point light sources,

which results in more proper lighting depend on the cost of

computational power. One way to avoid this issue is to, for

every fragment of the object on which to apply lighting,

choose the best point of the light source, and use only this

point, as a point light, for the calculating the light.

In the special case of a spherical light source shading a

spherical object, we found that it is possible to very

efficiently approximate this light point source. This can be

done by simply multiply the normalized normal vector of

the fragment to be lit, by the light radius of the light source,

and add this vector to the position of the light (see Figure 4).

Fig 9: Light represented as a point light source

Fig 10: More realistic light, giving light to a larger area of

the sphere.

VI.PARTICLE SYSTEM

The effects, such as smoke, fire and explosions, are in

general difficult to create due to their irregular, and

perceptually random, shapes and behavior of asteroids.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 3, March 2018

 All Rights Reserved © 2018 IJERCSE 138

A common way to create convincing effects in real time is

to generate and transform them using a particle system, as

discovered by Reeves [Reeves 1983]. This section is

explaining in the algorithm used in our game, as well as the

results, and discusses our decision.

A. Dynamics of Particle System

Each particle has a predetermined lifetime, typically of a

few times, during which it can undergo various changes.

Dynamic particle system begins its life when it is generated

or emitted by its particle system. The system emits particles

at random positions within a area of space shaped like a

sphere, hemisphere, cone, box or any arbitrary mesh. The

particle is displayed until its time is out, at which point it is

removed from the system. The system‟s emission rate

indicates how many particles are emitted per second,

although the exact times of emission are randomized

slightly. The choice of emission rate and average particle

lifetime calculate the number of particles in the “stable”

state (i.e., where emission and particle expiry are happening

at the same rate) and how long the system takes to reach that

state.

VII.USER INTERFACE

Fig 11: Screenshot during a gameplay

Fig 12: Pause Menu

Fig 13: Weapons selection and favorites menu

VIII. TECHNOLOGIES USED

A. C# Language

(For writing object's dynamic behaviours)

C# (pronounced as see sharp) is a multi-paradigm

programming language encompassing strong typing,

imperative, declarative, functional, generic, object-oriented

(class-based), and component-oriented programming

disciplines. It was developed by Microsoft within its .NET

initiative and later approved as a standard by Ecma (ECMA-

334) and ISO (ISO/IEC 23270:2006). C# is one of the

programming languages designed for the Common

Language Infrastructure.

B. Unity3D

(For combining sourcecode with objects)

Unity is a cross-platform game engine developed by Unity

Technologies, which is primarily used to develop

videogames and simulations for computers, consoles and

mobile devices. First announced only for OS X, at Apple's

Worldwide Developers Conferencein 2005, it has since been

extended to target 27 platforms.

C. Adobe Photoshop

(For designing 2D objects like MainMenu)

Adobe Photoshop is a popular image changing software

package. It is widely used by photographers for photo

editing (fixing colors, reducing noise, adding effects, fixing

brightness/contrast) and by graphic designers and Web

designers to create and change images for web pages.

D.Blender (For creating 3D models)

Blender is a professional, free and open-source 3D computer

graphics software toolset used for creating animated films,

visual effects, art, 3D printed models, interactive 3D

applications and video games. Blender's features include 3D

modules, UV unwrapping, texturing, raster graphics editing,

rigging and skinning, fluid and smoke simulation, particle

simulation, soft bodysimulation, sculpting, animating,

match moving, camera tracking, rendering, motion graphics,

video editing and compositing. It also features an integrated

game engine.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 3, March 2018

 All Rights Reserved © 2018 IJERCSE 139

IX.PACKAGES INCLUDED

A. UnityEngine.Audio

Loading audio files and playing on triggers, buffering and

streaming of audio.

B. UnityEngine.UI

Display of UI and handling user input, drawing of UI,

handling the clickable area for buttons and other inputs

C. UnityEngine.AI

Handles the AI movement, player tracking and chasing, auto

firing, etc

D. UnityEngine.SceneManagement

Handles different scenes in the game, like home screen,

game stage screen, pause screen, gameover screen.

SceneManager loads the scenes based on user input via UI

or if any event occurs like collision of player vehicle

E. Quaternion.Euler

Returns a rotation that rotates z degrees around the z axis, x

degrees around the x axis, and y degrees around the y axis

(in that order). Used to Rotate ships when moving in X axis

F. EventTrigger

Receives events from the EventSystem and calls registered

functions for each event.

G. Rigidbody

Adding a Rigidbody component to an object will put its

motion under the control of Unity's physics engine. Even

without adding any code, a Rigidbody object will be pulled

downward by gravity and will react to collisions with

incoming objects if the right Collider component is also

present.

H. System.Collections

The System.Collections namespace contains interfaces and

classes that define various collections of objects, such as

lists, queues, bit arrays, hash tables and dictionaries.

Required to use classes like IEnumerator.

X.CONCLUSION

Even though the game might not the standards of many

commercial games, given the resources and time frame. The

game is easy to play and the visual effects make the game

look graphically good. Each effect contributes to the

appearance of the game. The game is easy to play and the

visual effects make the game look best. Each effect donates

to the look of the game own laptop. There are a lot of

positive aspects to working together with team. When

problems occur everyone can help, ideas can be discussed

and you get to know each other better, making it more

motivating and fun with members to work on a project. In

hindsight, we should probably have utilized the rooms with

computers provided by college in order to increase

productivity.

XI.FUTURE SCOPE

There are some features that had to be dropped during the

development of this project due to the lack of time. If the

group were to continue further development, some of these

features would be reexamined and implemented into the

game. More content is something that would be the first

thing to be added to the game is that multiple player can

play the game at a same time. A proper development

system, where the player receives better weapons or more

health over time, has also been discussed. This could be

implemented in a number of ways, either by collecting

elevations dropped by enemies or by receiving an elevation

when a certain number of enemies have been defeated by

the player. Regardless of the specifics, this will give the

player a feeling of development and thus will inspire them

to keep on playing. Special powers like time rewind can also

be implemented with extended time.

REFERENCES

[1] R. Galantay, et al., "living-room: Interactive, space

orientedaugmented reality," 2004, p. 71.

[2] K. Kim, et al., "ARPushPush: Augmented reality gamein

indoor environment," 2005

[3] M. WEILGUNY and D. MEDIEN, "Design Aspects in

Augmented Reality Games," 2006.

[4] AKENINE-MÖLLER, T., HAINES, E., and HOFFMAN

N. 2008. Real-Time Rendering. Third Edition, Boca Raton,

CRC Press.

[5] BLINN, J. 1978. Simulation of Wrinkled Surfaces. ACM

SIGGRAPH Computer Graphics, vol. 12, no. 3, pp. 286–

292.

[6] NYSTROM, R. 2014. Game Programming Patterns.

Genever Benning, ch 2.

[7] FISHMAN, Band SCHACHTER, B.1980.Computer

display of height fields. Computers& Graphics, vol. 5, no. 2,

pp. 53-60.

[8] MUSGRAVE, F. K., KOLB, C. E., and MACE R. S.

1989. The Synthesis and Rendering of Eroded Fractal

Terrains. ACM SIGGRAPH Computer Graphics, vol. 23,

no.4, July, pp.41-50.

