
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 1, January 2024

90

Framework for Parallel Programming Model in Bulk

Data Operations
[1]Olubukola D. Adekola, [2]Oludotun Oluyade, [3]Oyebola Akande, [4]Wumi Ajayi, [5]Adesoji Adegbola

[1] [3] [4] [5] School of Computing and Engineering Sciences, Babcock University, Ogun State, Nigeria,
[2] Researcher, Pearlsoft Nigeria Limited, Lagos State, Nigeria

Corresponding Author Email: [1]adekolao@babcock.edu.ng, [2]oluyadeo@babcock.edu.ng, [3]akandeo@babcock.edu.ng,
[4]ajayiw@babcock.edu.ng, [5]adegbolaa@babcock.edu.ng

Abstract— Although hardware manufacturers are relentlessly building multi-cores system, software parallelization will not advance

simply because the hardware has been built that way; it is a conscious effort of developing frameworks and models that can optimally

exploit inherent hardware parallelism and make software implementation easy. Thus, parallel programming is an essential concern of

software engineers in order to meet up with the call -in technological development. In the generation where there is incredibly massive

bulk data to deal with, software developers need to seek algorithms or techniques that will directly take advantage of the underlying

parallelized processing resources. This work focuses on the design of a fork and join parallel programming framework which can handle

bulk data operations inherent in enterprise solutions. Techniques for designing parallel framework was followed and Amdahl’s law is

adopted to identify the appreciable speedup point so as to know the quantity of threads that could give optimum performance at any given

time while exploiting available processor cores.

Index Terms— Amdahl’s law, Bulk data, Fork and join Parallelism, Programming model.

I. INTRODUCTION

Surprisingly, most of the universe is inherently parallel. A

great number of problems seeking solutions characteristically

have abundance of natural parallelism upon which a software

engineer can leverage. It is even possible to change the entire

approach to solving a problem to utilize the inherent

parallelism. Even most computer hardware today are built to

provide parallelism capabilities. But generations of software

architects have left performance to hardware and are only

writing serial solutions to problems. When it comes to speed

and turn-around-time, the common thinking pattern stops

only at what the hardware and the system software can afford.

We design our algorithms and write lines of code usually to

solve parallel issues in a sequential manner forgetting that we

live in a parallel world where solutions are better parallel

aswell. Software engineering in itself involves “application

of systematic, disciplined, quantifiable approaches to the

development, operation and maintenance of efficient and

effective software and the study of these approaches; that is,

the application of engineering to software” [1]. But rather

developed solutions are with the focus of “just working” not

necessarily concerned with how well they work. Because the

system hardware (specifically the processor) comes with

better power over and over, generations of programmers /

software architects have left performance to hardware.

Leveraging on Gordon Moore’s forecast that “the number of

transistors incorporated in a chip would approximately

double every twenty-four months” [2, 3] which translates to

more processing speed. Software engineers then just rely on

the speed available through the hardware. The reason for

throwing in more transistors is actually to get more

performance but this can only make systems faster to a limit.

This is because it hit the wall on issues such as heat, power

degeneracy, instruction-level parallelism, rate of clock, as

well as chip scale. The new order is to consider having

multiple cores or processors on a single chip which is referred

to as the multi-core era. These processors are designed to run

in parallel. Then automatically, the system assigns tasks to

these processors as it deems fit to ensure they work in parallel

in order to get anticipated performance [4]. For a method of

scheduling to have a significant influence on performances,

tasks are distributed over multiple cores [5]. But there is so

much limitations in what the hardware can offer software

developers if they leave the task to automatic parallelism of

the hardware. This appears somewhat a level of

irresponsibility implementing parallelizable solutions in the

tradition serial manner. Sincerely, there is no magical

hardware machine that will take serial code and turn it to

parallel only because the processors now come in parallel.

Therefore, the practical truce is that software developers

should consider designing solutions in parallel to

purposefully take advantage of the underlying hardware

technology made available to them [6].

The principle in multi-core architecture is to keep number

of cores constant for a number of years while increasing the

number of threads in each core. A thread could be commonly

described with a life cycle within the range of being created,

started, running, waiting, and then terminated [7]. This

implies keeping number of cores constant while increasing

the degree of parallelism. To achieve full potential and

performance of multi-core architecture, the software that will

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 1, January 2024

91

run on it must be written as parallel programs. This is because

it is parallel program that will distribute computation among

multiple cores thus enhancing throughput [8].

Many software frameworks have been developed to aid

parallelism of software solutions such as Message Passing

Interface, Java fork and join, MapReduce etc. In the study of

[7] it was stated that comparison of parallel programming

models would significantly provide useful insights for further

work. Java fork and join could not handle bulk or big data

operations. Thus, this study proposes a framework which

extends Java fork and join to handle bulk data operations in

parallel. This type of solutions is highly needed in enterprise

solutions because of massive generation of data in their

everyday operations.

Section 2 discusses literatures that reveal the trends in

software processing, from serial programming to

multi-processing and literatures on related works. Sections 3

to 5 are on the theoretical background to parallel design.

Section 6 presents the design of the proposed framework for

applying fork and join on big dataset.

II. LITERATURE REVIEW

Traditionally, computer software is written and known for

serial computation. For a problem to be solved, usually an

algorithm has to be designed and implemented as a sequence

stream of both mathematical, logical and lexical instructions

which are then executed by a system’s central processing unit

(CPU). Conversely, parallel computing makes use of several

processing elements concurrently to resolve a given problem

[9]. The whole process is reached by first dividing the whole

problem into independent segments such that each processing

division can execute each segment of the algorithm

concurrently alongside with others. The processing elements

can be varied and consist of resources like a single computer

with several processors, networked computers, dedicated

hardware, or their combination. The following sub-sections

illustrated trends in software processing, advent of

multiprocessor, successive pace of programming and

implemented solutions:

A. Trends in Software Processing

The very first beginning was the days of serial processing

and serial execution of programs on one processor.

Traditionally, programs are design to run one instruction per

time (one after the other) till completion. Serial execution of a

program in-conjunction with numerous manual operations

involved makes the execution slow and cumbersome. When

programs are executed serially it causes the processor or the

I/O devices to be idle at a time or the other during execution

despite availability of scheduled job in the job stream. A way

to solve this challenge is to allot extra or other jobs to the

processor and I/O devices during the idling period. This

interleaved execution of programs is called

Multiprogramming [10]. Degree of Multiprogramming, that

is, the number of programs actively competing for systems

resources increases utilization. Multiprocessing means

involving more than one processor in handling jobs or tasks

or treads. In this turn, two or more processors are made to run

multiple independent tasks concurrently in which

communication and coordination between them are carefully

managed. As an instance, MapReduce is multiprocessing

under processor-level-parallelism. As performance

improvement progressively becomes a critical concern,

computer designers taught of enhancing chips speed by

increasing their clock speed. Another direction most CPU

designers progressed was parallelism. Two basic categories

of parallelism include “instruction-level parallelism and

processor-level parallelism”. The instruction-level looked

into getting more instructions per second from individual

instructions. The processor-level is how more than one CPU

can work on the same problem [11].

Reference [12] presents a chart showing increasing

transistor counts based on Moore's Law. However, a different

method of applying them is in additional cores. First,

single-thread performance has kept growing slightly,

showing that it is still an essential quantity. These increases in

performance were realized through careful power

management and dynamic clock frequency adjustments.

Thinking about the reality of the projected future, significant

changes may not be experienced in frequency and power;

nonetheless, more improvements in instructions per clock

may somewhat raise single-threaded performance further,

although the margin may not be that pronounced. What draws

more interest are the transistor counts and quantity of cores.

But to what length can Moore's Law be sustained? A likely

estimate is that there can be an increase in the quantity of

cores in relation to the proportion of the quantity of

transistors. In recent times, Haswell Xeon CPUs already offer

up to 18 cores, Knights Corner Xeon Phis is equipped with

the 61 cores, therefore, one can submit that we are in an era

where Amdahl's Law call for an application of parallel

algorithms [13]. From an algorithmic standpoint, the quantity

of cores at hand is not germane as knowing how to write

massively parallel algorithms or make your solution take

advantage of or efficiently utilize the hardware. One of the

most popular plots in advancement in microprocessors and

Moore’s law is one named 35 Years of Microprocessor Trend

Data by [12] with some extrapolation by C. Moore. Figure 1

shows the newer 42 Years of Microprocessor Trend Data.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 1, January 2024

92

Figure 1: Forty-two years of microprocessor trend data [14]

The main reason for the introduction of parallel

architectures were power constraints, as the electric power

consumed by Central Processing Units and Graphic

Processing Units (GPUs) (and thus the heat generated)

increases in good approximation with the cubic power of

clock frequency.

B. Parallel Computing Gap

Parallelism means that an application splits its tasks up

into smaller subtasks which can be processed in parallel, i.e.,

on multiple CPUs at a go. Parallelism could be achieved on

distributed systems, multi-processor or multi-core. If there is

only one processor, then there can be concurrent execution

but not parallel. Concurrency implies that an application is

working on more than one tasks at the same time [15]. A

well-written concurrent program might run efficiently in

parallel on a multiprocessor.

Parallel computing is “the use of two or more processors

(cores, computers) in combination or simultaneously to solve

a single problem” [16]. Substantial percentage of the universe

is naturally parallel; many unsolved problems have equally

many natural parallelisms. Sometimes, the entire approach to

solving an identified problem may be changed just to make

use of the natural parallelism. For instance, a parallel

computer of about 50 processors does not make a program

run 50 times faster. A good factor is that the sequential

program might probably not have been very good [17]. This

may not be generally obvious but many of the parallel

processors are habitually idle. Traditionally, experiences of

most programmers in the area of parallel computing are little;

this is coupled with the fact that there are very little parallel

programs to emulate. Parallel program developers are equally

behind on their learning curves and also existing materials

made for serial systems are reused, even when such materials

cause performance difficulties [18].

Majority of serial computers have the same fundamental

arrangement, but this is not the same for parallel computers.

Parallel computers like the popular cluster systems are

basically just an assemblage of computers interconnected

together with Ethernet. They make use of simple instructions

which are similar to read and write to be able to communicate

among the processors [16]. The most popular method for

doing this communication is the Message Passing Interface

(MPI). Parallel computers of this like are described as

message-passing systems, or distributed memory computers.

To bring the concept of parallel computing or programming

to a simple illustration, if there is a job of painting a building

to be done, and the building contains 5 rooms, and the

painting of one room is independent of the other and also will

require the same amount of time to get each room painted.

One can assign the task of painting each room in the building

to five different painters (workers) and consequently get the

entire job done about 5 times faster. Tasks that are easily

parallelizable are sometimes called embarrassingly parallel.

An example is a brute-force search. We may not have to long

for 100% embarrassingly parallel situation which may not

always happen because it is difficult to parallelize a lot of

real-world computational problems excellently without

sustaining high cost of inter-processor communication and

coordination.

In the painting task example, we could get five-fold

speed-up compare to a single painter having to do the entire

job. But complication sets in if one of the rooms is twice the

size of the others, then the 5 painters will not achieve a 5-fold

speedup because the overall completion time is dominated by

the one room that takes the most time. Hence, Amdahl’s law

formula is needed which captures the extent to which any

complex job can be sped up which is restricted by how much

of the job should run serially.

Amdahl defines the “speedup, S, of a job as the ratio

between the times it takes one processor to complete the job

versus the time it takes n number of concurrent processors to

complete the same job. Amdahl’s law characterizes the

maximum speedup S that can be achieved by n processors

collaborating on an application, such that p is the fraction of

the job that can be executed in parallel.”

A program or an algorithm that is a candidate for

parallelization can be split into two parts:

1) A part which can be parallelized- parallelizable

2) A part which cannot be parallelized

-non-parallelizable

According to this law, if it takes standardized time 1 for a

processor to complete the job, with n simultaneous

processors, the parallel part takes time p/n and the serial part

takes time 1-p, then the overall parallelized calculation takes:

1 – p + p/n

Then Amdahl’s law [19, 20] implies that:

The speedup, i.e., the ratio between the sequential and

parallel time is given in Equation 1 as:

𝑺 =
𝟏

𝟏−𝒑+ 𝐩/𝐧
 (1)

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 1, January 2024

93

Following the earlier example, assume that each room is 1

unit, and the single large room has two units. Assigning one

painter (representing processor) per room means that 5 of 6

units can be painted in parallel, meaning that p = 5/6,

Therefore, the resulting speedup S becomes:

 𝑆 =
1

1/6 +1/6
 = 3

In summary, 5 painters worked on 5 rooms where one

room is twice the size of the other yields only a 3-fold speed

up. Invariably, this result is affected by the non-parallelizable

part of the task. And this can reduce further down as the

number of tasks increases involving non- parallelizables [21].

This is because the shared part of the job will require careful

coordination. One may only need to seek the point where the

speedup is appreciable and when it is no longer necessary.

Previously, when bigger problems are to be solved, owners

of these problems could often wait a little for a faster

computer to emerge. This was mainly due to Moore's law,

which majority took to mean that computer’s speed would

double their current speed about every two years. Though

things are not going that way any longer; if the GigaHertZ

(GHz) speed of the processors in a desktop computer is

considered, say 2 years ago, against the speed now, the

difference is not outstanding. It is getting impracticable to

make reliably low-cost processors that run significantly

faster. The point of deflection that promotes doubling up is

the quantity of processors on a particular chip. Today, it is

practically difficult to get a computer that is not parallel.

Even as small as an Apple watch is, it has 2 cores. Some

notable graphics processing chips have 128 specialized

compute cores, and some supercomputers incorporate these

chips (although the chips are somehow challenging to use

efficiently). The Tianhe-2 supercomputer has > 3,000,000

cores and a theoretical peak performance of > 50 Petaflops,

i.e., 50,000,000,000,000,000 floating point operations per

second [22]. The amount of cores/chip will increase

constantly, and hence parallel computing is essential to use

the available hardware [23]. This is particularly true for tasks

that are computation-intensive such as simulations, big data

analytics, complicated systems optimization etc. It may be

sufficient to say that Parallel computers are quite easy to

develop; the greater part of the effort is in software design.

Some smart-phones now have 8 cores (processors) and even

more. These are referred to as multi-core chips. Also, there

are graphics processing units with more than 100 highly

specialized processors. This is near to what Moore postulated

when he said that the number of transistors would keep

doubling. The rate of expansion will slow down, but

significant increases in the amount of transistors might still

continue. If a single processor cannot offer the needed speed

because of its inherent limitation, considering Amdahl at a

reasonable level on multicores should offer a better

advantage if software professionals at large would closely

consider parallelizing their solutions.

 By theoretical calculation, Amdahl's law shows that the

parallelizable part can be executed faster by adding more

hardware to it. This is not completely true because it gets to a

point where increase in n (number of CPUs) will make no

more difference. The other option is that the

non-parallelizable part could be executed faster by

optimizing the code. The algorithm might even be modified

to ensure the non-parallelizable part is generally reduced, by

making some of the task to become parallelizable (as much as

possible). While Amdahl's law promotes calculating the

theoretical speedup of parallelization of an algorithm [24],

other factors such as speed, CPU cache memory, and network

cards may also be checked to get the totality about overall

speed.

C. Designing Parallel Programs

Parallel programming is the name generally given to the

methods that take advantage of computers with two or more

processors (multicore). It is essential to determine which

designing technique is appropriate for a parallel algorithmic

problem. Notable design techniques include Divide and

Conquer, Dynamic Programming, Linear Programming,

Greedy Method, Backtracking, Branch and Bound.

To be able to design parallel programs, the followings are

important:

1) Problem characteristics

i) Understand the Problem and the Program

Sometimes, it might be a problem that you need to

understand, at other times you might need to understand

existing serial codes. This depends on where you are starting

from i.e. whether there is an existing solution or you are

providing a fresh one.

ii) Identifying dependencies and independencies in the

Problem

To provide a fresh solution to a problem, what comes first

and most paramount is to understand the problem to solve in

parallel. Then one must find out if the problem at hand is a

type that can truly be parallelized. An example of a problem

with little or no parallelism is the one displaying high

dependency, either code or data e.g: Computation of F, the

Fibonacci series (0,1,1,2,3,5,8,...) using the formula in the

following Equation 2:

𝐹(𝑛) = 𝐹(𝑛 − 1) + 𝐹(𝑛 − 2) (2)

Obviously, the computation of the F(n) value uses those of

both F(n-1) and F(n-2), which must be computed first.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 1, January 2024

94

iii) Identifying hotspots sections in the code

When dealing with an existing serial code, we need to first

determine the part of the code where major work is done or

using computer resources mostly. This is done through

asymptotic analysis of the algorithm. Those code parts using

up computer resources like CPU and memory is referred to as

hotspots. Then the hotspots should be parallelized if they are

independent parts [25].

iv) Identify slow areas of code

Identify areas that are predominantly slow and thus

become bottlenecks due to I/O. This can be handled by either

restructuring the algorithm or use a new algorithm or remove

the predominantly slow sections.

v) Consider reusability

Consider reusing an existing third-party parallel software

or framework and use of libraries that can automatically be

used for developing parallel software.

2) Partitioning

Partitioning of a problem has to do with decomposition or

breaking down of problem or jobs into manageable units

called chunks. A chunk can be 64bits or 128bits. One of the

important first steps in designing a parallel program is to

break the problem into smaller discrete chunks. The two

methods of doing this are domain decomposition and

functional decomposition.

(i) Domain Decomposition

In domain decomposition, the problem is viewed from the

sides of its associated data as shown in Figure 2 below. Thus,

its dataset is broken into pieces or chunks that are

manageable. Each manageable chunk is called a task. Each

chunk is managed in separate processors where software

works on each task independently and simultaneously i.e., in

parallel. Solution from each task is later merged to provide

the main solution.

Figure 2: Data partitioning

(ii) Functional Decomposition

In functional decomposition, computation rather than data

is decomposed into subparts, where each part performs a

specific role. Thus, each subpart or task works to perform a

portion of the overall work to be done as illustrated in the

following Figure 3:

Figure 3: Functional decomposition of computation split into

different tasks

3) Synchronous vs. asynchronous communications in

Parallel Program

Sharing of data between tasks involves communications.

Communication can be either synchronous or asynchronous.

A Synchronous communication is the one where there is

handshaking between tasks sharing data. Implementation of

synchronous communication can be done explicitly by

programmers into the parallel code. This increases coding

workload on the programmer because the programmer needs

to worry about providing solution to the problem at hand and

as well handle the synchronous communication. In other

cases, the implementation is done implicitly. In this case,

synchronous communication code is integrated at low level

without programmer’s knowledge. In synchronous

communications, job needs to wait for the completion of

other job communication, this is known as blocking

communication. Asynchronous communications is a

non-blocking communication which allows other jobs

waiting for communication to do other useful tasks i.e. they

do not wait idling.

D. Closely Related Works on Parallel Programming

Models

This section reviewed literatures on designing of parallel

programs to building tools for converting serial programs to

parallel ones using shared-memory architecture.

Reference [26] developed two models; the first one is a

computational model for designing and analyzing algorithms

that runs on shared memory multi-core architecture, and the

second one is Software and Algorithm for running on

Multi-core (SWARM). The computational multi-core model

considered the issues of number of cores integrated on a

single chip, memory bandwidth usage, memory cache and

synchronization. These problems were resolved by the

computational model with the use of cache-aware approach.

SWARM is an open source library which contains parallel

programming framework for developing algorithm that

works on multi-core systems.

Reference [27] introduced Ateji® PX1 a Java preprocessor

which converts serial programming into parallel programs

which can efficiently use the underlining multi-core chip.

Ateji® PX1 attempts to make parallel programs work

efficiently on shared-memory architecture and overcomes the

pitfall encountered when developers individually developed a

parallel program. Such pitfalls are race condition, deadlock,

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 1, January 2024

95

late time to market, complex and error-prone parallel

programs. By converting serial programs to parallel ones

Ateji® PX1 could enhance central processing unit (CPU) to

accommodate more jobs at the same time on multiple cores.

This implies reduction in processing time, full and efficient

utilization of all the cores.

Reference [28] in their research compared two parallel

frameworks; Java fork/join and MapReduce with respect to

scalability and programmability. In terms of scalability, Java

fork/join cannot scale well with large inputs because of its

shared-memory architecture while MapReduce scales well on

very large (big dataset) input size with its shared-nothing

architecture. In terms of programmability, MapReduce has

fewer lines of code than Java fork/join. The authors further

compared MapReduce and Java fork/join which have parallel

construct with sequential C and Haskell sequential which are

without parallel construct. It was found that sequential C has

288 lines of code, while Haskell has 66 lines of code but both

could not scale well with large input sizes.

The work of [29] established that high performance

computing requires parallel processing. Their results show

jobs are done more easily and time is also saved when load is

shared via efficient multicore utilization. The major reasons

for much time consumption are performance measure on

huge data and also algorithms operating on this data. The

study touched on extension to mobile applications which are

rapidly under development in many applications.

Reference [30] considers creating active knowledge

technology as potential features of parallel programming

systems. Worthy of consideration in generating parallel

programs is the properties of model’s data because the data

properties commonly define the numerical model’s behavior.

The study also described the development of intelligent

algorithms for generation of parallel programs of numerical

supercomputer simulation as it affects the behavior of

models.

In the overview carried out by [31], it was stated that study

in the field of Internet of things (IoT) have demonstrated the

possibility of producing large volume of data and

computation among various devices of the IoT. Then the

Industrial Internet of Health Things (IIoHT) is an extension

of Internet of Health Things (IHoT). The IoHT with diversity

of tasks such as observing, consulting, monitoring, and

treatment process of remote exchange data processes would

benefit greatly from parallel computing and influence IIoHT.

III. PROPOSED FRAMEWORK FOR FORK AND

JOIN PARALLELISM IN BULK DATA

The Fork and Join model simply break (forks) a task into

subtasks in a way that each subtask is independently handled

by a resource such as the processor and after each subtask’s

operation has performed expected execution, they can be

joined back to form a coherent solution which serves as the

result of the experiment. This disintegration is applied

recursively until sub-problems are so small that sequential

solution becomes faster. The techniques of operation here is

obviously the Divide-and-conquer method. Naturally, a

divide-and-conquer breaks a whole problem down into

chunks or sizes that can be easily solved individually. These

chunks are called sub-problems, each individual chunk is

solved to provide a solution, and their several solutions are

combined to form a singular solution which is for the whole

problem as illustrated in the following Figure 4:

Figure 4: Illustrating fork and join technique

The following Figure 5 illustrates the proposed

architectural model for Fork and Join Parallelism as applied

to Bulk Data implementation. This presents how a pool of

massive data can be modeled to make an optimal use of the

underlying multi-core processor hardware rather than

assuming the solution will run in parallel because the

hardware is by default in parallel. Millions of records are

loaded onto a memory list, while the records are divided into

threads. In the process, Amdahl laws is adopted to compute

the optimal speedup for the said process in execution which

helps in partitioning tasks into their parallelizable number

and therefore distributed to the multi-core hardware to

ascertain an optimal utilization of the existing hardware.

These subtasks are executed by the multi-core processors and

results are delivered in parallel. Work stealing can also take

place in the midst of the multithreaded programs to make the

parallel computing effective. This is a way of playing two

sets of idle and saturated processors against each other. Work

stealing distributes the scheduling work over idle processors

in order to ensure that all processors have tasks to do and as

such no scheduling overhead occurs. This is done efficiently

in terms of execution time, memory usage, and

inter-processor communication. This is what is employed in

the scheduler for the Java fork/join framework.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 1, January 2024

96

Figure 5: Proposed Architectural Framework for Fork and

Join Parallel Programming Model in Bulk Data

It is important to set a reasonable sequential threshold

which will also aid division of tasks. Also, making tasks

smaller enhances parallelism, increases load balancing and

improves throughput.

IV. ECONOMIC IMPORTANCE OF PARALLELISM

Successful parallelism provides improved performance;

better efficiency; more productivity; reduces time to market;

and maximized profits because it is designed towards

customer specifications and business goals. Furthermore,

parallel programs are easily modified as business

requirements changes. With a well programmed parallel

computing, CPU resources is efficiently utilized because all

available cores will be engaged such that computer can

handle more different jobs at the same time. Parallel

computing can better represent real world events than serial

programming making parallelism the future of computing. In

addition, to make efficient use of modern computer

architecture which uses parallel hardware, software that runs

on it should be parallel software. Parallelization is also

significant because it reduces processing time, increases

throughput which is easily noticeable when dealing with big

data operations.

V. FUTURE RECOMMENDATION AND

CONCLUSION

With the perceived future of smart systems and Artificial

Intelligence, processing speed is a key requirement. Current

turn of events clearly indicate that the software professionals

need to think more in the direction of parallelizing their

inventions just as most of their hardware counterparts are

busy doing. Many problems already present parallel ways of

solving them. It is even possible to change the entire

approach to solving a problem in order to take advantage of

the inbuilt parallelism in the problem. Though parallel

programs are not simple to write but if careful attention is

given to this, the outcome could be incredibly great [32]. In

the generation where there is now incredibly massive bulk

data to deal with, software developers need to seek

algorithms and techniques that will directly take advantage of

the underlying parallelized processing resources.

REFERENCES

[1] IEEE, (1990).Institute of Electrical and Electronics Engineers, IEEE

610.12-1990 - IEEE Standard Glossary of Software Engineering

Terminology. Published Date:1990-12-31, Reaffirmed:2002-09-12.

[2] G. Moore, “Cramming more components into integrated circuits,”

Electronics Magazine, vol. 38, no. 8, pp. 114–117, 1965.

[3] M. T. Heath, “A tale of two laws,” The International Journal of High

Performance Computing Applications, vol. 29, no. 3, 320–330, 2015.

[4] C. Saidu, A. A. Obiniyi and P. Ogedebe, "Overview of Trends

Leading to Parallel Computing and Parallel Programming," British

Journal of Mathematics & Computer Science, vol. 7, no. 1, pp. 40-57,

2015.

[5] A. Klilou and A. Arsalane, "Parallel implementation of pulse

compression method on a multi-core digital signal processor,"

International Journal of Electrical and Computer Engineering

(IJECE), vol. 10, no. 6, pp. 6541-6548, 2020.

[6] G. E. Blelloch and B. M. Maggs, “Parallel algorithms,” Algorithms

and theory of computation handbook: special topics and techniques

(2nd ed.). Chapman & Hall/CRC, 2010.

[7] M. N. Jamaluddin, A. Ismail, A. Rashid and T. T. Takleh,

“Performance Comparison of Java based Parallel Programming

Models,” Indonesian Journal of Electrical Engineering and

Computer Science, vol. 16, no. 3, pp. 1577-1583, 2019.

[8] B. Shekhar and C. A. Andrew, “The future of Microprocessors,”

Communications of ACM, 67-77, 2011.

[9] Y. Ben-Asher, “Basic Concepts in Parallel Algorithms and Parallel

Programming. Multicore Programming Using the ParC Language,”

Undergraduate Topics in Computer Science. Springer, London, 2012.

[10] M. Milenkovic, “Operating Systems, Concepts and Design,” (2nd e.d),

Tata McGraw-Hill Companies, Inc., New York, 2005.

[11] A. S. Tanenbaum, “Structured Computer Organization,” (6th ed.),

Upper Saddle River, New Jersey, Pearson Prentice Hall, 2012.

[12] M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

and C. Batten, “35 Years of Microprocessor Trend,” 2010. Available:

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-

data/

[13] I. Cutress, and A. Shilov, "The Larrabee Chapter Closes: Intel's Final

Xeon Phi Processors Now in EOL, " 2019. Available:

https://www.anandtech.com/show/14305/intel-xeon-phi-knights-mill

-now-eol. Retrieved June 10, 2021.

[14] C. Rupp, “42 Years of Microprocessor Trend Data,” 2018. Available:

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-

data/

[15] B. Hemprasad, “Concurrency Vs Parallelism”.Shri Guru

GobindSinghji Institute of Engineering and Technology, 2013.

[16] Q. F. Stout and R. Miller, “Algorithms Techniques for regular

networks of processors, ”Algorithms and Theory of Computation

Handbook, (2nd ed.), M. Atallah, ed., 46:1–18, 2009.

[17] Network World, Published by IDG Network World Inc. 18(9), 108

pgs, February 6, 2001, ISSN 0887-7661

[18] A. C. Andrew, “Parallelism for the Masses: Opportunities and

Challenges,” Intel Corporation, Carnegie Mellon University, 2008.

[19] G. M. Amdahl, "Validity of the single processor approach to

achieving large scale computing capabilities". Proceeding AFIPS '67

(Spring) Proceedings of the April 18–20, 1967, Spring Joint

Computer Conference: 483–485.

[20] M. McCool, J. Reinders and A. Robison, “Structured Parallel

Programming: Patterns for Efficient Computation, “ Elsevier, p. 61,

2013.

[21] H. Maurice and N. Shavit, "The Art of multiprocessor programming,"

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 1, January 2024

97

(1st ed.). USA: Morgan Kaufmann Publisher: Elsevier imprint, 2008.

[22] D. Alba, "China's Tianhe-2 Caps Top 10 Supercomputers". IEEE

Spectrum, 2013.

[23] M. T. Heath and E. Solomonik, “Parallel Numerical Algorithms,”

Lecture Notes: Department of Computer Science, University of

Illinois, Urbana-Champaign, 2019. Available:

https://solomonik.cs.illinois.edu/teaching/cs554_fall2017/notes/chapt

er_01.pdf

[24] C. A. Navarro, N. Hitschfeld and L. Mateu, "A Survey on Parallel

Computing and its Applications in Data-Parallel Problems Using

GPU Architectures," Communications in Computational Physics, vol.

15, pp. 285-329, 2013.

[25] B. Barney, “Introduction to Parallel Computing Tutorial,” Livermore

Computing Center, California, United States, 2021. Available:

https://hpc.llnl.gov/training/tutorials/introduction-parallel-computing

-tutorial

[26] D. A. Bader, V. Kanade and K. Madduri, “SWARM: A Parallel

Programming Framework for Multicore Processors,” Georgia

Institute of Technology, College of Computing, 2007. Available:

http://multicore-swarm.sourceforge.net/#documentation

[27] M. Giri and R. Rahul, “Leveraging Multi-core Processors Through

Parallel Programming cognizant 20-20 insights”, Teaneck, New

Jersey (U.S.), 2011.

[28] R. Stewart, and J. Singer, “Comparing Fork / Join and MapReduce.

Mathematical and Computer Sciences, Heriot Watt University, 2012.

[29] K. Sujatha, P. V. Rao, A. A. Rao, V. G. Sastry, V. Praneeta, and R. K.

Bharat, “Multicore parallel processing concepts for effective sorting

and searching,” International Conference on Signal Processing and

Communication Engineering Systems, 2015, pp. 162-166, doi:

10.1109/SPACES.2015.7058238.

[30] V. Malyshkin, “Parallel computing technologies 2018: Automatic

parallel implementation of applications.” The Journal of

Supercomputing, vol. 75, 7747–7749. 2019.

[31] X. Yang, S. Nazir, H. Khan, M. Shafiq, and N. Mukhtar, “Parallel

Computing for Efficient and Intelligent Industrial Internet of Health

Things: An Overview,” Complexity, vol. 2, pp. 1-11, 2021.

[32] I. Öz and S. Arslan, "Predicting the Soft Error Vulnerability of

Parallel Applications Using Machine Learning," International

Journal of Parallel Programming, 3, 2021.

