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Abstract— Although hardware manufacturers are relentlessly building multi-cores system, software parallelization will not advance 

simply because the hardware has been built that way; it is a conscious effort of developing frameworks and models that can optimally 

exploit inherent hardware parallelism and make software implementation easy. Thus, parallel programming is an essential concern of 

software engineers in order to meet up with the call -in technological development. In the generation where there is incredibly massive 

bulk data to deal with, software developers need to seek algorithms or techniques that will directly take advantage of the underlying 

parallelized processing resources. This work focuses on the design of a fork and join parallel programming framework which can handle 

bulk data operations inherent in enterprise solutions. Techniques for designing parallel framework was followed and Amdahl’s law is 

adopted to identify the appreciable speedup point so as to know the quantity of threads that could give optimum performance at any given 

time while exploiting available processor cores. 

 

Index Terms— Amdahl’s law, Bulk data, Fork and join Parallelism, Programming model. 

 

I. INTRODUCTION 

Surprisingly, most of the universe is inherently parallel. A 

great number of problems seeking solutions characteristically 

have abundance of natural parallelism upon which a software 

engineer can leverage. It is even possible to change the entire 

approach to solving a problem to utilize the inherent 

parallelism. Even most computer hardware today are built to 

provide parallelism capabilities. But generations of software 

architects have left performance to hardware and are only 

writing serial solutions to problems. When it comes to speed 

and turn-around-time, the common thinking pattern stops 

only at what the hardware and the system software can afford. 

We design our algorithms and write lines of code usually to 

solve parallel issues in a sequential manner forgetting that we 

live in a parallel world where solutions are better parallel 

aswell. Software engineering in itself involves “application 

of systematic, disciplined, quantifiable approaches to the 

development, operation and maintenance of efficient and 

effective software and the study of these approaches; that is, 

the application of engineering to software” [1]. But rather 

developed solutions are with the focus of “just working” not 

necessarily concerned with how well they work. Because the 

system hardware (specifically the processor) comes with 

better power over and over, generations of programmers / 

software architects have left performance to hardware. 

Leveraging on Gordon Moore’s forecast that “the number of 

transistors incorporated in a chip would approximately 

double every twenty-four months” [2, 3] which translates to 

more processing speed. Software engineers then just rely on 

the speed available through the hardware. The reason for 

throwing in more transistors is actually to get more 

performance but this can only make systems faster to a limit. 

This is because it hit the wall on issues such as heat, power 

degeneracy, instruction-level parallelism, rate of clock, as 

well as chip scale. The new order is to consider having 

multiple cores or processors on a single chip which is referred 

to as the multi-core era. These processors are designed to run 

in parallel. Then automatically, the system assigns tasks to 

these processors as it deems fit to ensure they work in parallel 

in order to get anticipated performance [4]. For a method of 

scheduling to have a significant influence on performances, 

tasks are distributed over multiple cores [5]. But there is so 

much limitations in what the hardware can offer software 

developers if they leave the task to automatic parallelism of 

the hardware. This appears somewhat a level of 

irresponsibility implementing parallelizable solutions in the 

tradition serial manner. Sincerely, there is no magical 

hardware machine that will take serial code and turn it to 

parallel only because the processors now come in parallel. 

Therefore, the practical truce is that software developers 

should consider designing solutions in parallel to 

purposefully take advantage of the underlying hardware 

technology made available to them [6].  

The principle in multi-core architecture is to keep number 

of cores constant for a number of years while increasing the 

number of threads in each core. A thread could be commonly 

described with a life cycle within the range of being created, 

started, running, waiting, and then terminated [7]. This 

implies keeping number of cores constant while increasing 

the degree of parallelism. To achieve full potential and 

performance of multi-core architecture, the software that will 
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run on it must be written as parallel programs. This is because 

it is parallel program that will distribute computation among 

multiple cores thus enhancing throughput [8]. 

Many software frameworks have been developed to aid 

parallelism of software solutions such as Message Passing 

Interface, Java fork and join, MapReduce etc. In the study of 

[7] it was stated that comparison of parallel programming 

models would significantly provide useful insights for further 

work. Java fork and join could not handle bulk or big data 

operations. Thus, this study proposes a framework which 

extends Java fork and join to handle bulk data operations in 

parallel. This type of solutions is highly needed in enterprise 

solutions because of massive generation of data in their 

everyday operations. 

Section 2 discusses literatures that reveal the trends in 

software processing, from serial programming to 

multi-processing and literatures on related works. Sections 3 

to 5 are on the theoretical background to parallel design. 

Section 6 presents the design of the proposed framework for 

applying fork and join on big dataset.  

II. LITERATURE REVIEW 

Traditionally, computer software is written and known for 

serial computation. For a problem to be solved, usually an 

algorithm has to be designed and implemented as a sequence 

stream of both mathematical, logical and lexical instructions 

which are then executed by a system’s central processing unit 

(CPU). Conversely, parallel computing makes use of several 

processing elements concurrently to resolve a given problem 

[9]. The whole process is reached by first dividing the whole 

problem into independent segments such that each processing 

division can execute each segment of the algorithm 

concurrently alongside with others. The processing elements 

can be varied and consist of resources like a single computer 

with several processors, networked computers, dedicated 

hardware, or their combination. The following sub-sections 

illustrated trends in software processing, advent of 

multiprocessor, successive pace of programming and 

implemented solutions: 

A. Trends in Software Processing 

The very first beginning was the days of serial processing 

and serial execution of programs on one processor. 

Traditionally, programs are design to run one instruction per 

time (one after the other) till completion. Serial execution of a 

program in-conjunction with numerous manual operations 

involved makes the execution slow and cumbersome. When 

programs are executed serially it causes the processor or the 

I/O devices to be idle at a time or the other during execution 

despite availability of scheduled job in the job stream. A way 

to solve this challenge is to allot extra or other jobs to the 

processor and I/O devices during the idling period. This 

interleaved execution of programs is called 

Multiprogramming [10]. Degree of Multiprogramming, that 

is, the number of programs actively competing for systems 

resources increases utilization. Multiprocessing means 

involving more than one processor in handling jobs or tasks 

or treads. In this turn, two or more processors are made to run 

multiple independent tasks concurrently in which 

communication and coordination between them are carefully 

managed. As an instance, MapReduce is multiprocessing 

under processor-level-parallelism. As performance 

improvement progressively becomes a critical concern, 

computer designers taught of enhancing chips speed by 

increasing their clock speed. Another direction most CPU 

designers progressed was parallelism. Two basic categories 

of parallelism include “instruction-level parallelism and 

processor-level parallelism”. The instruction-level looked 

into getting more instructions per second from individual 

instructions. The processor-level is how more than one CPU 

can work on the same problem [11]. 

Reference [12] presents a chart showing increasing 

transistor counts based on Moore's Law. However, a different 

method of applying them is in additional cores. First, 

single-thread performance has kept growing slightly, 

showing that it is still an essential quantity. These increases in 

performance were realized through careful power 

management and dynamic clock frequency adjustments. 

Thinking about the reality of the projected future, significant 

changes may not be experienced in frequency and power; 

nonetheless, more improvements in instructions per clock 

may somewhat raise single-threaded performance further, 

although the margin may not be that pronounced. What draws 

more interest are the transistor counts and quantity of cores. 

But to what length can Moore's Law be sustained? A likely 

estimate is that there can be an increase in the quantity of 

cores in relation to the proportion of the quantity of 

transistors. In recent times, Haswell Xeon CPUs already offer 

up to 18 cores, Knights Corner Xeon Phis is equipped with 

the 61 cores, therefore, one can submit that we are in an era 

where Amdahl's Law call for an application of parallel 

algorithms [13]. From an algorithmic standpoint, the quantity 

of cores at hand is not germane as knowing how to write 

massively parallel algorithms or make your solution take 

advantage of or efficiently utilize the hardware. One of the 

most popular plots in advancement in microprocessors and 

Moore’s law is one named 35 Years of Microprocessor Trend 

Data by [12] with some extrapolation by C. Moore. Figure 1 

shows the newer 42 Years of Microprocessor Trend Data. 

 

 

 

 

 

 

 

 



  ISSN (Online) 2394-2320 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE) 

Vol 11, Issue 1, January 2024 

 

92 
 

 
Figure 1: Forty-two years of microprocessor trend data [14] 

The main reason for the introduction of parallel 

architectures were power constraints, as the electric power 

consumed by Central Processing Units and Graphic 

Processing Units (GPUs) (and thus the heat generated) 

increases in good approximation with the cubic power of 

clock frequency. 

B. Parallel Computing Gap 

Parallelism means that an application splits its tasks up 

into smaller subtasks which can be processed in parallel, i.e., 

on multiple CPUs at a go. Parallelism could be achieved on 

distributed systems, multi-processor or multi-core. If there is 

only one processor, then there can be concurrent execution 

but not parallel. Concurrency implies that an application is 

working on more than one tasks at the same time [15]. A 

well-written concurrent program might run efficiently in 

parallel on a multiprocessor. 

Parallel computing is “the use of two or more processors 

(cores, computers) in combination or simultaneously to solve 

a single problem” [16]. Substantial percentage of the universe 

is naturally parallel; many unsolved problems have equally 

many natural parallelisms. Sometimes, the entire approach to 

solving an identified problem may be changed just to make 

use of the natural parallelism. For instance, a parallel 

computer of about 50 processors does not make a program 

run 50 times faster. A good factor is that the sequential 

program might probably not have been very good [17]. This 

may not be generally obvious but many of the parallel 

processors are habitually idle. Traditionally, experiences of 

most programmers in the area of parallel computing are little; 

this is coupled with the fact that there are very little parallel 

programs to emulate. Parallel program developers are equally 

behind on their learning curves and also existing materials 

made for serial systems are reused, even when such materials 

cause performance difficulties [18].  

Majority of serial computers have the same fundamental 

arrangement, but this is not the same for parallel computers. 

Parallel computers like the popular cluster systems are 

basically just an assemblage of computers interconnected 

together with Ethernet. They make use of simple instructions 

which are similar to read and write to be able to communicate 

among the processors [16]. The most popular method for 

doing this communication is the Message Passing Interface 

(MPI). Parallel computers of this like are described as 

message-passing systems, or distributed memory computers. 

To bring the concept of parallel computing or programming 

to a simple illustration, if there is a job of painting a building 

to be done, and the building contains 5 rooms, and the 

painting of one room is independent of the other and also will 

require the same amount of time to get each room painted. 

One can assign the task of painting each room in the building 

to five different painters (workers) and consequently get the 

entire job done about 5 times faster. Tasks that are easily 

parallelizable are sometimes called embarrassingly parallel. 

An example is a brute-force search. We may not have to long 

for 100% embarrassingly parallel situation which may not 

always happen because it is difficult to parallelize a lot of 

real-world computational problems excellently without 

sustaining high cost of inter-processor communication and 

coordination.  

In the painting task example, we could get five-fold 

speed-up compare to a single painter having to do the entire 

job. But complication sets in if one of the rooms is twice the 

size of the others, then the 5 painters will not achieve a 5-fold 

speedup because the overall completion time is dominated by 

the one room that takes the most time. Hence, Amdahl’s law 

formula is needed which captures the extent to which any 

complex job can be sped up which is restricted by how much 

of the job should run serially. 

Amdahl defines the “speedup, S, of a job as the ratio 

between the times it takes one processor to complete the job 

versus the time it takes n number of concurrent processors to 

complete the same job. Amdahl’s law characterizes the 

maximum speedup S that can be achieved by n processors 

collaborating on an application, such that p is the fraction of 

the job that can be executed in parallel.”  

A program or an algorithm that is a candidate for 

parallelization can be split into two parts: 

1) A part which can be parallelized- parallelizable 

2) A part which cannot be parallelized 

-non-parallelizable 

According to this law, if it takes standardized time 1 for a 

processor to complete the job, with n simultaneous 

processors, the parallel part takes time p/n and the serial part 

takes time 1-p, then the overall parallelized calculation takes: 

1 – p + p/n 

Then Amdahl’s law [19, 20] implies that: 

The speedup, i.e., the ratio between the sequential and 

parallel time is given in Equation 1 as: 

𝑺 =
𝟏

𝟏−𝒑+ 𝐩/𝐧
  (1) 
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Following the earlier example, assume that each room is 1 

unit, and the single large room has two units. Assigning one 

painter (representing processor) per room means that 5 of 6 

units can be painted in parallel, meaning that p = 5/6,  

 
Therefore, the resulting speedup S becomes: 

 𝑆 =
1

1/6 +1/6
 = 3 

In summary, 5 painters worked on 5 rooms where one 

room is twice the size of the other yields only a 3-fold speed 

up. Invariably, this result is affected by the non-parallelizable 

part of the task. And this can reduce further down as the 

number of tasks increases involving non- parallelizables [21]. 

This is because the shared part of the job will require careful 

coordination. One may only need to seek the point where the 

speedup is appreciable and when it is no longer necessary.  

Previously, when bigger problems are to be solved, owners 

of these problems could often wait a little for a faster 

computer to emerge. This was mainly due to Moore's law, 

which majority took to mean that computer’s speed would 

double their current speed about every two years. Though 

things are not going that way any longer; if the GigaHertZ 

(GHz) speed of the processors in a desktop computer is 

considered, say 2 years ago, against the speed now, the 

difference is not outstanding. It is getting impracticable to 

make reliably low-cost processors that run significantly 

faster. The point of deflection that promotes doubling up is 

the quantity of processors on a particular chip. Today, it is 

practically difficult to get a computer that is not parallel. 

Even as small as an Apple watch is, it has 2 cores. Some 

notable graphics processing chips have 128 specialized 

compute cores, and some supercomputers incorporate these 

chips (although the chips are somehow challenging to use 

efficiently). The Tianhe-2 supercomputer has > 3,000,000 

cores and a theoretical peak performance of > 50 Petaflops, 

i.e., 50,000,000,000,000,000 floating point operations per 

second [22]. The amount of cores/chip will increase 

constantly, and hence parallel computing is essential to use 

the available hardware [23]. This is particularly true for tasks 

that are computation-intensive such as simulations, big data 

analytics, complicated systems optimization etc. It may be 

sufficient to say that Parallel computers are quite easy to 

develop; the greater part of the effort is in software design. 

Some smart-phones now have 8 cores (processors) and even 

more. These are referred to as multi-core chips. Also, there 

are graphics processing units with more than 100 highly 

specialized processors. This is near to what Moore postulated 

when he said that the number of transistors would keep 

doubling. The rate of expansion will slow down, but 

significant increases in the amount of transistors might still 

continue. If a single processor cannot offer the needed speed 

because of its inherent limitation, considering Amdahl at a 

reasonable level on multicores should offer a better 

advantage if software professionals at large would closely 

consider parallelizing their solutions. 

  By theoretical calculation, Amdahl's law shows that the 

parallelizable part can be executed faster by adding more 

hardware to it. This is not completely true because it gets to a 

point where increase in n (number of CPUs) will make no 

more difference. The other option is that the 

non-parallelizable part could be executed faster by 

optimizing the code. The algorithm might even be modified 

to ensure the non-parallelizable part is generally reduced, by 

making some of the task to become parallelizable (as much as 

possible). While Amdahl's law promotes calculating the 

theoretical speedup of parallelization of an algorithm [24], 

other factors such as speed, CPU cache memory, and network 

cards may also be checked to get the totality about overall 

speed. 

C. Designing Parallel Programs 

Parallel programming is the name generally given to the 

methods that take advantage of computers with two or more 

processors (multicore). It is essential to determine which 

designing technique is appropriate for a parallel algorithmic 

problem. Notable design techniques include Divide and 

Conquer, Dynamic Programming, Linear Programming, 

Greedy Method, Backtracking, Branch and Bound.  

To be able to design parallel programs, the followings are 

important: 

1) Problem characteristics 

i) Understand the Problem and the Program 

Sometimes, it might be a problem that you need to 

understand, at other times you might need to understand 

existing serial codes. This depends on where you are starting 

from i.e. whether there is an existing solution or you are 

providing a fresh one. 

ii) Identifying dependencies and independencies in the 

Problem 

To provide a fresh solution to a problem, what comes first 

and most paramount is to understand the problem to solve in 

parallel. Then one must find out if the problem at hand is a 

type that can truly be parallelized. An example of a problem 

with little or no parallelism is the one displaying high 

dependency, either code or data e.g: Computation of F, the 

Fibonacci series (0,1,1,2,3,5,8,...) using the formula in the 

following Equation 2: 

𝐹(𝑛) = 𝐹(𝑛 − 1) + 𝐹(𝑛 − 2)        (2) 

Obviously, the computation of the F(n) value uses those of 

both F(n-1) and F(n-2), which must be computed first. 
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iii) Identifying hotspots sections in the code 

When dealing with an existing serial code, we need to first 

determine the part of the code where major work is done or 

using computer resources mostly. This is done through 

asymptotic analysis of the algorithm. Those code parts using 

up computer resources like CPU and memory is referred to as 

hotspots. Then the hotspots should be parallelized if they are 

independent parts [25]. 

iv) Identify slow areas of code 

Identify areas that are predominantly slow and thus 

become bottlenecks due to I/O. This can be handled by either 

restructuring the algorithm or use a new algorithm or remove 

the predominantly slow sections. 

v) Consider reusability 

Consider reusing an existing third-party parallel software 

or framework and use of libraries that can automatically be 

used for developing parallel software. 

2) Partitioning 

Partitioning of a problem has to do with decomposition or 

breaking down of problem or jobs into manageable units 

called chunks. A chunk can be 64bits or 128bits. One of the 

important first steps in designing a parallel program is to 

break the problem into smaller discrete chunks. The two 

methods of doing this are domain decomposition and 

functional decomposition. 

(i) Domain Decomposition 

In domain decomposition, the problem is viewed from the 

sides of its associated data as shown in Figure 2 below. Thus, 

its dataset is broken into pieces or chunks that are 

manageable. Each manageable chunk is called a task. Each 

chunk is managed in separate processors where software 

works on each task independently and simultaneously i.e., in 

parallel. Solution from each task is later merged to provide 

the main solution. 

 
Figure 2: Data partitioning 

(ii) Functional Decomposition 

In functional decomposition, computation rather than data 

is decomposed into subparts, where each part performs a 

specific role. Thus, each subpart or task works to perform a 

portion of the overall work to be done as illustrated in the 

following Figure 3: 

 
Figure 3: Functional decomposition of computation split into 

different tasks 

3) Synchronous vs. asynchronous communications in 

Parallel Program 

Sharing of data between tasks involves communications. 

Communication can be either synchronous or asynchronous. 

A Synchronous communication is the one where there is 

handshaking between tasks sharing data. Implementation of 

synchronous communication can be done explicitly by 

programmers into the parallel code. This increases coding 

workload on the programmer because the programmer needs 

to worry about providing solution to the problem at hand and 

as well handle the synchronous communication. In other 

cases, the implementation is done implicitly. In this case, 

synchronous communication code is integrated at low level 

without programmer’s knowledge. In synchronous 

communications, job needs to wait for the completion of 

other job communication, this is known as blocking 

communication. Asynchronous communications is a 

non-blocking communication which allows other jobs 

waiting for communication to do other useful tasks i.e. they 

do not wait idling. 

D. Closely Related Works on Parallel Programming 

Models 

This section reviewed literatures on designing of parallel 

programs to building tools for converting serial programs to 

parallel ones using shared-memory architecture. 

Reference [26] developed two models; the first one is a 

computational model for designing and analyzing algorithms 

that runs on shared memory multi-core architecture, and the 

second one is Software and Algorithm for running on 

Multi-core (SWARM). The computational multi-core model 

considered the issues of number of cores integrated on a 

single chip, memory bandwidth usage, memory cache and 

synchronization. These problems were resolved by the 

computational model with the use of cache-aware approach. 

SWARM is an open source library which contains parallel 

programming framework for developing algorithm that 

works on multi-core systems.  

Reference [27] introduced Ateji® PX1 a Java preprocessor 

which converts serial programming into parallel programs 

which can efficiently use the underlining multi-core chip. 

Ateji® PX1 attempts to make parallel programs work 

efficiently on shared-memory architecture and overcomes the 

pitfall encountered when developers individually developed a 

parallel program. Such pitfalls are race condition, deadlock, 
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late time to market, complex and error-prone parallel 

programs. By converting serial programs to parallel ones 

Ateji® PX1 could enhance central processing unit (CPU) to 

accommodate more jobs at the same time on multiple cores. 

This implies reduction in processing time, full and efficient 

utilization of all the cores.  

Reference [28] in their research compared two parallel 

frameworks; Java fork/join and MapReduce with respect to 

scalability and programmability. In terms of scalability, Java 

fork/join cannot scale well with large inputs because of its 

shared-memory architecture while MapReduce scales well on 

very large (big dataset) input size with its shared-nothing 

architecture. In terms of programmability, MapReduce has 

fewer lines of code than Java fork/join. The authors further 

compared MapReduce and Java fork/join which have parallel 

construct with sequential C and Haskell sequential which are 

without parallel construct. It was found that sequential C has 

288 lines of code, while Haskell has 66 lines of code but both 

could not scale well with large input sizes. 

The work of [29] established that high performance 

computing requires parallel processing. Their results show 

jobs are done more easily and time is also saved when load is 

shared via efficient multicore utilization. The major reasons 

for much time consumption are performance measure on 

huge data and also algorithms operating on this data. The 

study touched on extension to mobile applications which are 

rapidly under development in many applications.  

Reference [30] considers creating active knowledge 

technology as potential features of parallel programming 

systems. Worthy of consideration in generating parallel 

programs is the properties of model’s data because the data 

properties commonly define the numerical model’s behavior. 

The study also described the development of intelligent 

algorithms for generation of parallel programs of numerical 

supercomputer simulation as it affects the behavior of 

models. 

In the overview carried out by [31], it was stated that study 

in the field of Internet of things (IoT) have demonstrated the 

possibility of producing large volume of data and 

computation among various devices of the IoT. Then the 

Industrial Internet of Health Things (IIoHT) is an extension 

of Internet of Health Things (IHoT). The IoHT with diversity 

of tasks such as observing, consulting, monitoring, and 

treatment process of remote exchange data processes would 

benefit greatly from parallel computing and influence IIoHT. 

III. PROPOSED FRAMEWORK FOR FORK AND 

JOIN PARALLELISM IN BULK DATA  

The Fork and Join model simply break (forks) a task into 

subtasks in a way that each subtask is independently handled 

by a resource such as the processor and after each subtask’s 

operation has performed expected execution, they can be 

joined back to form a coherent solution which serves as the 

result of the experiment. This disintegration is applied 

recursively until sub-problems are so small that sequential 

solution becomes faster. The techniques of operation here is 

obviously the Divide-and-conquer method. Naturally, a 

divide-and-conquer breaks a whole problem down into 

chunks or sizes that can be easily solved individually. These 

chunks are called sub-problems, each individual chunk is 

solved to provide a solution, and their several solutions are 

combined to form a singular solution which is for the whole 

problem as illustrated in the following Figure 4:  

 
Figure 4: Illustrating fork and join technique 

The following Figure 5 illustrates the proposed 

architectural model for Fork and Join Parallelism as applied 

to Bulk Data implementation. This presents how a pool of 

massive data can be modeled to make an optimal use of the 

underlying multi-core processor hardware rather than 

assuming the solution will run in parallel because the 

hardware is by default in parallel. Millions of records are 

loaded onto a memory list, while the records are divided into 

threads. In the process, Amdahl laws is adopted to compute 

the optimal speedup for the said process in execution which 

helps in partitioning tasks into their parallelizable number 

and therefore distributed to the multi-core hardware to 

ascertain an optimal utilization of the existing hardware. 

These subtasks are executed by the multi-core processors and 

results are delivered in parallel. Work stealing can also take 

place in the midst of the multithreaded programs to make the 

parallel computing effective. This is a way of playing two 

sets of idle and saturated processors against each other. Work 

stealing distributes the scheduling work over idle processors 

in order to ensure that all processors have tasks to do and as 

such no scheduling overhead occurs. This is done efficiently 

in terms of execution time, memory usage, and 

inter-processor communication. This is what is employed in 

the scheduler for the Java fork/join framework. 
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Figure 5: Proposed Architectural Framework for Fork and 

Join Parallel Programming Model in Bulk Data 

It is important to set a reasonable sequential threshold 

which will also aid division of tasks. Also, making tasks 

smaller enhances parallelism, increases load balancing and 

improves throughput. 

IV. ECONOMIC IMPORTANCE OF PARALLELISM 

Successful parallelism provides improved performance; 

better efficiency; more productivity; reduces time to market; 

and maximized profits because it is designed towards 

customer specifications and business goals. Furthermore, 

parallel programs are easily modified as business 

requirements changes. With a well programmed parallel 

computing, CPU resources is efficiently utilized because all 

available cores will be engaged such that computer can 

handle more different jobs at the same time. Parallel 

computing can better represent real world events than serial 

programming making parallelism the future of computing. In 

addition, to make efficient use of modern computer 

architecture which uses parallel hardware, software that runs 

on it should be parallel software. Parallelization is also 

significant because it reduces processing time, increases 

throughput which is easily noticeable when dealing with big 

data operations. 

V. FUTURE RECOMMENDATION AND 

CONCLUSION 

With the perceived future of smart systems and Artificial 

Intelligence, processing speed is a key requirement. Current 

turn of events clearly indicate that the software professionals 

need to think more in the direction of parallelizing their 

inventions just as most of their hardware counterparts are 

busy doing. Many problems already present parallel ways of 

solving them. It is even possible to change the entire 

approach to solving a problem in order to take advantage of 

the inbuilt parallelism in the problem. Though parallel 

programs are not simple to write but if careful attention is 

given to this, the outcome could be incredibly great [32]. In 

the generation where there is now incredibly massive bulk 

data to deal with, software developers need to seek 

algorithms and techniques that will directly take advantage of 

the underlying parallelized processing resources. 
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