
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 10 Issue 12 December 2023

36

Unleashing the Potential of C++: Using

Optimization Techniques on Procedural-Oriented

Programming for Enhanced Efficiency
[1] Md. Faruk Abdullah Al Sohan, [2] Kazi Redwan, [3] Mustakim Ahmed

[1] [2] [3] Department of Computer Science and Engineering American International University- Bangladesh (AIUB)

Dhaka, Bangladesh

Corresponding Author Email: [1] farukabdullahh@gmail.com, [2] 22-46069-1@student.aiub.edu,
[3] ahmedmustakim031@gmail.com

Abstract— This research explores the impact of optimization techniques on the performance of C++ code, focusing on the Fibonacci

problem. We investigate the importance of efficient coding practices in achieving optimal solutions, particularly for large datasets. By

utilizing techniques like memoization, loop unrolling, and function inlining, we aim to enhance the efficiency and effectiveness of our

C++ code. Through performance comparisons between optimized and unoptimized solutions, we demonstrate the superiority of optimized

code in terms of speed and resource utilization. Our findings underscore the significance of code optimization in obtaining efficient

solutions for computational problems.

Index Terms— c++ optimization techniques, unoptimized code, memoization, loop unrolling, and function in linin.

I. INTRODUCTION

Lung the mid-20th century, researchers and computer

scientists initiated a systematic exploration and development

of optimization techniques, delving into various methods and

algorithms to enhance code optimization and program

performance. Code optimization is basically a method or

approach used to enhance the functionality, effectiveness or

other desirable properties of a code [1]. In the context of C++

programming, optimization plays a critical role in unleashing

the full potential of the language and achieving optimal code

performance [2].

This research paper focuses on exploring C++

optimization techniques within the procedural-oriented

programming (POP) paradigm. Our objective is to

investigate the impact of optimization techniques on code

performance and demonstrate their effectiveness in

enhancing the efficiency of C++ programs. To illustrate the

benefits of optimization, we consider the Fibonacci problem

as a case study. The Fibonacci sequence, with its recursive

nature and exponential growth, presents a computational

challenge that necessitates optimized solutions for efficient

execution. Throughout this research, we explore into various

optimization techniques specifically tailored for C++ code.

These techniques include memoization, function unrolling,

and inlining, among others. By employing these techniques

and conducting comprehensive experiments, we analyze and

compare the performance of optimized code against

unoptimized code, highlighting the advantages of

optimization in terms of speed, resource utilization, and

scalability [1,3].

The rest of the paper is organized as follows: In section II,

the previous works regarding the C++ optimization

techniques. In section III, we will show the details of the

optimization paradigms with detailed figure and information.

In section IV, optimization process and section V describes

the working principle. Section VI will show the result and

analyze the improvement these techniques provided and

construct a recommended coding pattern. Section VII

concludes the paper.

II. LITERATURE REVIEW

A lot of research has been done related to the optimization

of code; some was done in specific sectors such as mobile

applications and embedded systems, and most of the research

was based on the OOP concept.

A researcher published a paper in 2006 about C++

optimization for mobile applications. This researcher's work

aimed to optimize object-oriented programming

(OOP)-based code in mobile applications, with a particular

focus on enhancing performance [4]. The researcher

presented a range of optimization techniques and discussed

their applicability in the context of mobile application

development. The researcher's paper sheds light on various

optimization techniques, providing insights into their usage

and effectiveness. However, one aspect that appeared less

elucidated was the analysis methodology employed by the

researcher. The paper did not explicitly elaborate on how the

results were derived or the specific approach used to arrive at

the optimized code that exhibited superior performance.

While most research in the field of C++ optimization has

traditionally focused on object-oriented programming (OOP),

the significance of exploring POP-based problem-solving

approaches cannot be overlooked. [5]

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 10 Issue 12 December 2023

37

Considering all these issues, we have undertaken this work

on C++ optimisation techniques within procedural-oriented

programming (POP) to unlock the full potential of the

language. Throughout our research, we have applied and

thoroughly discussed various code optimization techniques,

specifically tailored to enhance the performance and

efficiency of POP-based C++ code. To validate the

effectiveness of these optimizations, we have applied tools

such as <chrono> for checking the execution time of code

and also applied code profiling tools for in-depth analysis

(iterations/ejections/bytes). Finally, we have expressed that

the optimized code we have developed works exceptionally

well in handling large-scale data calculations.

III. OPTIMIZATION CRITERIA

In our research, we delve into four key aspects of

optimization: memory optimization, compiler optimization,

algorithmic optimization, and I/O optimization. By

addressing these areas, we aim to significantly improve the

performance of our code. To analyze and evaluate the impact

of these optimizations, we rely on two crucial tools:

<chrono> for measuring execution time and gperftools for

CPU profiling [6,7].

To conduct CPU profiling using gperftools, we utilize the

following commands in the terminal of macOS:

1. Compilation:

 g++ filename.cpp -o myfile -lprofiler

2. Profiling command:

 CPUPROFILE=myfile.prof./myfile [7]

The profiles obtained provide detailed insights into the

code’s performance, enabling us to identify areas for

improvement.

To analyze the performance of our code, we employ

<chrono> to measure the execution time of specific code

snippets. By strategically placing <chrono> timers before and

after the code under examination, we can accurately measure

the time taken for execution. We repeat the execution

multiple times to ensure consistency and reliable results. [6]

Here's a pseudocode example demonstrating the usage of

<chrono> for performance analysis:

#include <iostream>

#include <chrono>

using namespace std;

int main() {

 chrono::high_resolution_clock::time_point startTime,

endTime;

 startTime = chrono::high_resolution_clock::now();

 // Code snippet to be tested

 // ...

 endTime = chrono::high_resolution_clock::now();

 chrono::duration<double, milli> duration = endTime –

startTime;

 return 0;

} [6]

A. Memory Optimization

Memory optimization is important in procedural-oriented

programming (POP), especially when working with limited

resources. When we don’t use variables and memory

efficiently, it can slow down our programs and make them

less efficient. To solve this, we can use techniques that help

us make the best use of the memory we have [1].

Example:

unsigned long long fibonacci (int n) {

 if (n <= 1) {

 return n;

 }

 unsigned long long prev = 0;

 unsigned long long curr = 1;

 for (int I = 2; I <= n; i++) {

 unsigned long long temp = curr;

 curr = prev + curr;

 prev = temp;

 }

return curr;

}

1) Minimizing memory usage:

Minimizing memory usage is a memory optimization

technique aimed at reducing the amount of memory required

by a program. By minimizing memory usage, we can

conserve valuable resources and improve the overall

performance and efficiency of our code.

In this example, we have used the unsigned long long data

type to accommodate larger Fibonacci numbers. We only

store the previous and current Fibonacci numbers (‘prev’ and

‘curr’), minimizing the memory usage. [1]

2) Efficient data structure utilization

Efficient data structure utilization is a memory

optimization technique that focuses on choosing and utilizing

data structures in a way that maximizes memory efficiency

and performance. By selecting appropriate data structures

and using them efficiently, we can minimize memory usage

and improve the overall efficiency of our code. [2]

In this example, we are using minimal memory by only

storing the necessary variables ‘prev’ and ‘curr’. There is no

additional memory allocation or complex data structure

utilization, resulting in efficient memory usage.

3) Optimizing memory deallocation

Optimizing memory deallocation is a memory

optimization technique that focuses on efficiently managing

and releasing memory resources when they are no longer

needed. Proper memory deallocation helps prevent memory

leaks and ensures that memory is freed up for other parts of

the program to use. [2]

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 10 Issue 12 December 2023

38

In this example, we have used the unsigned long long data

type to handle larger Fibonacci numbers. Since there is no

dynamic memory allocation involved, explicit memory

deallocation is not needed. The variables ‘prev’ and ‘curr’

will be automatically deallocated when they go out of scope.

4) Use appropriate variable types:

Choose the smallest variable type that can accommodate

the required range of values. For example, use ‘int’ instead of

‘long’ when dealing with smaller numbers. This helps save

memory by avoiding excessive storage space. [3]

B. Compiler Optimization

Compiler optimization is the process of automatically

improving the performance and efficiency of code during the

compilation phase. It involves analyzing the code and

applying transformations to generate optimized machine

instructions that can execute faster and use system resources

more efficiently. [3]

1) Loop Unrolling:

Loop unrolling is a technique where multiple iterations of a

loop are combined into a single iteration, reducing the

overhead of loop control. In the case of the Fibonacci code,

loop unrolling can be applied to compute multiple Fibonacci

numbers in a single iteration.

Basically, we write loop in this way:

 for (int I = 2; I <= n; i++) {

 int temp = curr;

 curr = prev + curr;

 prev = temp;

 }

After unrolling the loop of our code it will be:

 for (int I = 2; I <= n; I += 2) {

 int temp1 = curr + prev;

 int temp2 = curr + temp1;

 prev = temp1;

 curr = temp2;

 }

In the optimized version with loop unrolling, instead of

computing Fibonacci numbers one by one, we calculate two

Fibonacci numbers in each iteration. This reduces the number

of loop iterations by half, resulting in improved performance.

In the benchmark test with n=10000, the original Fibonacci

loop took approximately 20 microseconds to execute, while

the unrolled loop only took 1 or 2 microseconds. This

demonstrates the significant performance improvement

achieved by using loop unrolling technique, reducing the

execution time by a factor of 10 [1,2].

2) Function Inlining:

Function inlining is a compiler optimization technique

where the code of a called function is directly inserted into

the calling function, eliminating the overhead of function

calls. In the case of the Fibonacci code, inlining the recursive

function call can improve performance.

Example of Unoptimized Version:

int fibonacci_recursive_unoptimized(int n) {

 if (n <= 1) {

 return n;

 }

 return fibonacci_recursive_unoptimized(n – 1) +

fibonacci_recursive_unoptimized(n – 2);

}

Example of Optimized Version with Function Inlining:

int fibonacci_recursive_optimized_inline(int n) {

 if (n <= 1) {

 return n;

 }

 int fibNMinus2 = 0;

 int fibNMinus1 = 1;

 for (int I = 2; I <= n; i++) {

 int fibN = fibNMinus1 + fibNMinus2;

 fibNMinus2 = fibNMinus1;

 fibNMinus1 = fibN;

 }

 return fibNMinus1;

}

In the optimized version with function inlining, the

recursive function call is replaced with an iterative loop that

directly calculates the Fibonacci number. This eliminates the

overhead of function calls and improves performance.

In the benchmark test with n=10000, the original recursive

Fibonacci implementation failed to provide an output,

indicating a limitation in handling large values of n. However,

the inlined Fibonacci calculation with a loop performed

successfully and took approximately 26 microseconds to

execute. This demonstrates the efficiency and improved

performance of the inlined approach compared to the

recursive implementation. [1,2]

3) Constant Folding:

Constant folding is a compiler optimization technique

where expressions involving constants are evaluated at

compile-time rather than runtime. In the case of the Fibonacci

code, constant folding can be applied to optimize the

calculation of the base cases. [9]

Example of Unoptimized Version:

int fibonacci_unoptimized(int n) {

 if (n <= 1) {

 return n;

 }

 return fibonacci_unoptimized(n – 1) +

fibonacci_unoptimized(n – 2);

}

Example of Optimized Version with Constant Folding:

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 10 Issue 12 December 2023

39

int fibonacci_optimized_constant_folding(int n) {

 if (n <= 1) {

 return n;

 }

 const int sqrtFive = sqrt(5);

 const double phi = (1 + sqrtFive) / 2;

 return static_cast<int>((pow(phi, n) – pow(1 – phi, n)) /

sqrtFive);

}

In the optimized version with constant folding, the

Fibonacci formula using the golden ratio is used to directly

compute the Fibonacci number without the need for recursion

or iterative loops. This results in improved performance. In

the benchmark test with n=10000, the recursive Fibonacci

algorithm failed to produce an output within a reasonable

time frame, indicating its inefficiency for large inputs. On the

other hand, the optimized version using constant folding

completed the computation in approximately 15 to 17

microseconds. This demonstrates the significant performance

improvement achieved by leveraging constant folding,

reducing the execution time compared to the unoptimized

recursive approach.

4) Loop Fusion:

Loop fusion is a technique where multiple loops are

combined into a single loop, reducing loop overhead and

improving cache utilization. In the case of the Fibonacci code,

loop fusion can be applied to combine the calculation of

Fibonacci numbers and their sum [8].

Example of Unoptimized Version:

int fibonacci_sum_unoptimized(int n) {

 if (n <= 1) {

 return n;

 }

 int sum = 0;

 for (int I = 0; I <= n; i++) {

 sum += fibonacci_unoptimized(i);

 }

 return sum;

}

Example of Optimized Version with Loop Fusion:

int fibonacci_sum_optimized_loop_fusion(int n) {

 if (n <= 1) {

 return n;

 }

 int sum = 0;

 int fibNMinus2 = 0;

 int fibNMinus1 = 1;

 for (int I = 2; I <= n; i++) {

 int fibN = fibNMinus1 + fibNMinus2;

 sum += fibN;

 fibNMinus2 = fibNMinus1;

 fibNMinus1 = fibN;

 }

 return sum + 1;

}

In the optimized version with loop fusion, the calculation

of Fibonacci numbers and their summation is combined into a

single loop. This reduces the number of iterations and

eliminates the need for repetitive function calls, resulting in

improved performance. In the benchmark test with n = 10000,

the unoptimized Fibonacci sum function encountered issues

and was unable to produce an output. However, the optimized

Fibonacci sum function with loop fusion took approximately

22-27 microseconds to execute. This showcases a significant

performance improvement compared to the unoptimized

version, demonstrating the effectiveness of loop fusion in

reducing the execution time for Fibonacci sum calculations.

[2]

5) Dead Code Elimination:

Dead code elimination is a compiler optimization

technique where unused or unreachable code is removed

from the program. In the case of the Fibonacci code, dead

code elimination can be applied to remove unnecessary

calculations [8].

Example of Unoptimized Version:

int fibonacci_unoptimized(int n) {

 if (n <= 1) {

 return n;

 }

 int fib1 = 0;

 int fib2 = 1;

 int fibN = 0;

 for (int I = 2; I <= n; i++) {

 fibN = fib1 + fib2;

 fib1 = fib2;

 fib2 = fibN;

 }

 return fibN;

}

Example of Optimized Version with Dead Code Elimination:

int fibonacci_optimized_dead_code_elimination(int n) {

 if (n <= 1) {

 return n;

 }

 int fib1 = 0;

 int fib2 = 1;

 for (int I = 2; I <= n; i++) {

 int fibN = fib1 + fib2;

 fib1 = fib2;

 fib2 = fibN;

 }

 return fib2;

}

In the optimized version with dead code elimination, the

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 10 Issue 12 December 2023

40

unnecessary variable fibN is eliminated as it is not needed to

compute the final Fibonacci number. This reduces memory

usage and improves performance. In the benchmark test with

n=100000, the unoptimized Fibonacci function took

approximately 283 microseconds to execute, while the

optimized version with dead code elimination only took 255

microseconds. This demonstrates the significant performance

improvement achieved by eliminating dead code, reducing

the execution time by approximately 10%. The results

indicate that the optimized version performs better and is

more efficient in calculating the Fibonacci sequence for

larger values of n. [3]

6) Common Subexpression Elimination:

Common subexpression elimination is a compiler

optimization technique where redundant computations are

identified and eliminated. In the case of the Fibonacci code,

common subexpressions can be identified and calculated

only once.

Example of Unoptimized Version:

int fibonacci_unoptimized(int n) {

 if (n <= 1) {

 return n;

 }

 return fibonacci_unoptimized(n – 1) +

fibonacci_unoptimized(n – 2);

}

Example of Optimized Version with Common Subexpression

Elimination:

int

fibonacci_optimized_common_subexpression_elimination(in

t n) {

 if (n <= 1) {

 return n;

 }

 int fibNMinus2 = 0;

 int fibNMinus1 = 1;

 for (int I = 2; I <= n; i++) {

 int fibN = fibNMinus1 + fibNMinus2;

 fibNMinus2 = fibNMinus1;

 fibNMinus1 = fibN;

 }

 return fibNMinus1;

}

In the optimized version with common subexpression

elimination, the redundant computation of

fibonacci_unoptimized(n–1) and fibonacci_unoptimized (n –

2) is eliminated. Instead, the Fibonacci numbers are

calculated iteratively using two variables, fibNMinus2 and

fibNMinus1. This reduces redundant function calls and

improves performance. In the benchmark test with n = 10000,

the original Fibonacci recursion took a significant amount of

time and didn’t produce an output. However, the optimized

Fibonacci function with common subexpression elimination

completed in approximately 26 microseconds. This

demonstrates the effectiveness of the optimization technique

in reducing the execution time and enabling the calculation of

Fibonacci numbers for larger values of n.

C. Algorithmic Optimization

Algorithmic optimization, also known as algorithmic

efficiency, is a process that aims to improve the performance

and efficiency of algorithms by minimizing unnecessary

operations, reducing redundant computations, and utilizing

available resources effectively. It is a crucial aspect of

procedural-oriented programming (POP), which focuses on

designing and implementing algorithms that are optimized in

terms of time and space complexity. By analyzing the

algorithm’s structure, identifying bottlenecks, and making

strategic modifications, algorithmic optimization plays a

significant role in enhancing the efficiency and speed of

software and systems.

Selecting or designing algorithms with lower time or space

complexity is an important aspect of algorithmic

optimization. In the context of the Fibonacci sequence, an

optimized algorithm can be devised to achieve better

performance.

Example of Unoptimized Version:

int fibonacci_unoptimized(int n) {

 if (n <= 1) {

 return n;

 }

 return fibonacci_unoptimized(n – 1) +

fibonacci_unoptimized(n – 2);

}

Example of Optimized Version with Improved Time

Complexity:

int fibonacci_optimized_time_complexity(int n) {

 if (n <= 1) {

 return n;

 }

 int fibNMinus2 = 0;

 int fibNMinus1 = 1;

 for (int I = 2; I <= n; i++) {

 int fibN = fibNMinus1 + fibNMinus2;

 fibNMinus2 = fibNMinus1;

 fibNMinus1 = fibN;

 }

 return fibNMinus1;

}

By eliminating the recursive calls and computing

Fibonacci numbers iteratively, the optimized version

achieves a lower time complexity compared to the

unoptimized version. This results in improved performance

when calculating Fibonacci numbers for large values of n. [2]

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 10 Issue 12 December 2023

41

1) Reducing unnecessary computations:

Unnecessary computations can impact the efficiency of an

algorithm. In the case of the Fibonacci sequence, we can

optimize the algorithm to avoid redundant calculations.

Example of Unoptimized Version:

int fibonacci_unoptimized(int n) {

 if (n <= 1) {

 return n;

 }

 return fibonacci_unoptimized(n – 1)

fibonacci_unoptimized(n – 2);

}

Example of Optimized Version with Reduced Computations:

int fibonacci_optimized_computations(int n) {

 if (n <= 1) {

 return n;

 }

 int fibNMinus2 = 0;

 int fibNMinus1 = 1;

 for (int I = 2; I <= n; i++) {

 int fibN = fibNMinus1 + fibNMinus2;

 fibNMinus2 = fibNMinus1;

 fibNMinus1 = fibN;

 }

 return fibNMinus1;

}

In the optimized version, the Fibonacci numbers are

calculated only once and stored in variables (fibNMinus2 and

fibNMinus1) to avoid redundant function calls. This reduces

unnecessary computations and improves the efficiency of the

algorithm. [1]

2) Memoization to avoid redundant function calls:

Memoization is a technique used to optimize recursive

algorithms by storing the results of expensive function calls

and reusing them when the same inputs occur again. It helps

avoid redundant function calls and improves the overall

efficiency of the algorithm. [1]

Example of Unoptimized Version:

int fibonacci_unoptimized(int n) {

 if (n <= 1) {

 return n;

 }

 return fibonacci_unoptimized(n – 1) +

fibonacci_unoptimized(n – 2);

}

Example of Optimized Version with Memoization:

unsigned long long fibonacci(int n, vector<unsigned long

long>& memo) {

 if (n <= 1)

 return n;

 if (memo[n] != -1)

 return memo[n];

 memo[n] = fibonacci(n – 1, memo) + fibonacci(n – 2,

memo);

 return memo[n];

}

In the optimized version, a memoization technique is

applied using an unordered map (memo) to store previously

computed Fibonacci numbers. This avoids redundant

function calls for the same input values and improves the

efficiency of the algorithm by reusing the stored results.

D. I/O Optimization

I/O optimization in procedural-oriented programming

(POP) languages like C++ aims to enhance the efficiency of

input/output operations. Techniques such as buffering,

sequential I/O, file access modes, and error handling are

utilized to minimize overhead during external device or file

operations. Specifically in C++, disabling the

synchronization between C and C++ streams, using

‘ios_base::sync_with_stdio(false)’

That improves I/O efficiency, particularly when

exclusively using C++ input/output streams like cin and cout.

This allows C++ streams to function independently,

eliminating synchronization checks and potentially speeding

up I/O operations. However, caution is advised to ensure

exclusive use of C++ streams and avoid mixing them with

C-style functions to prevent unexpected behavior [8].

IV. PERFORMANCE ANALYSIS

In this research, our primary focus is on applying

optimization techniques to the Fibonacci algorithm. By

leveraging performance analysis tools like <chrono> and

gperftools (CPU profiling), we aim to identify areas within

the Fibonacci algorithm where performance improvements

can be made. This may involve analyzing the time

complexity of different approaches, examining memory

usage, or profiling function calls to detect potential

optimizations.

A. Performance Analysis Results using <chrono>:

Unoptimized vs. Optimized Fibonacci Code:

n
Execution Time (milliseconds)

Unoptimized Code Optimized Code

45 10000-12000 45

50 120000-130000 50

100 >130000 100

500 >130000 500

1000 >130000 1000

5000 >130000 5000

Sample of a Table footnote. (Table footnote)

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 10 Issue 12 December 2023

42

B. Performance Analysis Results Unoptimized Code using

‘gperftools (CPU Profiling)’:

n
CPU Profiling

Interrupts Subhead Bytes

45 1200-1500 45 >300000

50
120000-130

000
50 >300000

100+ >130000 100+ >300000

C. Performance Analysis [Code using ‘gperftools (CPU

Profiling)’:

n
CPU Profiling

Interrupts Subhead Bytes

0-900

0
0 0-9000 64

9000-

20000
1 9000-20000 160

Optimization efforts are often directed towards improving

program execution speed, reducing power consumption,

optimizing bus bandwidth, and managing memory usage.

However, these optimization goals are interconnected, and

enhancing one aspect may inadvertently impact others. It’s

important to acknowledge that even with the implementation

of various optimization techniques, there is no guarantee of

achieving overall program efficiency. Focusing efforts on

optimizing operations within these functions can lead to

noticeable performance improvements, ultimately benefiting

the overall performance of the program.

V. CONCLUSION

Optimizing code is essential for maximizing the

performance and efficiency of C++ programs. By

implementing memory optimization techniques, leveraging

compiler optimizations, conducting thorough performance

analysis, and carefully considering the trade-off between

performance and maintainability, programmers can greatly

enhance the execution speed and resource utilization of their

code. While optimization does not guarantee universal

efficiency, adopting these strategies facilitates the

identification and implementation of improvements that

contribute to better program performance. Embracing these

recommendations is crucial for creating high-performing

C++ applications that deliver optimal results, particularly

when tackling complex computational problems and

handling large datasets.

REFERENCES

[1] EFFECTIVE C++ THIRD EDITION BY SCOTT

MEYERS.

[2] C++ PRIMER 5TH EDITION BY STANLAY

LIPPMAN.

[3] OPTIMIZED C++: PROVEN TECHNIQUES FOR

HEIGHTENED PERFORMANCE 1ST EDITION BY

KURT GUNTHEROTH.

[4] C++ optimization for mobile applications Fadi Chehimi,

Paul Coulton and Reuben Edwards written on mobile

application.

[5] “A review of using object-orientation properties of C++

for designing expert system in strategic planning Author

links open overlay panel” Mohsen Ahmadi a, Moein

Qaisari Hasan Abadi b.

[6] https://en.cppreference.com/w/cpp/chrono

[7] https://hackingcpp.com/cpp/tools/profilers.html

[8] TECHNIQUES FOR SCIENTIFIC C++ BY TODD

VELDHUIZEN <TVELDHUI@ACM.ORG> VERSION

0.3, AUGUST 1999.

[9] https://iq.opengenus.org/constant-folding-and-propagatio

n/https://iq.opengenus.org/constant-folding-and-propagat

ion/

