Open Access Journal

ISSN : 2394-2320 (Online)

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

Open Access Journal

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

ISSN : 2394-2320 (Online)

Detection of Red Lesions For Diabetic Retinopathy In Telemedicine Context

Author : Kazi Syed Naseeruddin Mustafa 1 Prof.SushilKumar N. Holambe 2

Date of Publication :14th August 2017

Abstract: In this paper we present the Red Lesion Detection for diabetic retinopathy in telemedicine context. The method used in this in this paper is the process of morphological image flooding. The development of an automatic telemedicine system for computer-aided screening and grading of diabetic retinopathy depends on reliable detection of retinal lesions in fundus images Signs of DR include red lesions such as microaneurysms and intraretinal hemorrhages, and white lesions, such as exudates and cottonwool spots. This paper concerns only the red lesions, which are among the first unequivocal signs of DR. Therefore, their detection is critical for a prescreening system

Reference :

    1. N. Cheung, P. Mitchell, and T. Y. Wong, “Diabetic retinopathy,” Lancet, vol. 376, no. 9735, pp. 124–36, 2010.
    2. J. Ding and T. Y. Wong, “Current epidemiology of diabetic retinopathy and diabetic macular edema,” Curr. Diabetes Rep., vol. 12, no. 4, pp. 346–54, 2012.
    3. J. W. Y. Yau et al., “Global prevalence and major risk factors of diabetic retinopathy,” Diabetes Care, vol. 35, no. 3, pp. 556–64, 2012.
    4. D. Gan, Ed., Diabetes Atlas, 2nd ed. Brussels: Internatio, 2003.
    5. C. P. Wilkinson et al., “Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales,” Ophthalmology, vol. 110, no. 9, pp. 1677–82, 2003.
    6. C. Baudoin, B. Lay, and J. Klein, “Automatic detection of microaneurysms in diabetic fluorescein angiographies,” Revue Dépidémiologie et de Santé Publique, vol. 32, pp. 254–261, 1984.
    7. T. Spencer, R. P. Phillips, P. F. Sharp, and J. V. Forrester, “Automated detection and quantification of microaneurysm in fluorescein angiograms,” Graefes Archives for Clinical and Experimental Ophtalmology, vol. 230, pp. 36–41, 1992.
    8. M. Cree, J. Olson, K. McHardy, P. Sharp, and J. Forrester, “A fully automated comparative microaneurysm digital detection system,” Eye, vol. 11, pp. 622–628, 1997.
    9. A. J. Frame et al., “A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms,” Comput. Biol.Med., vol. 28, pp. 225–238, 1998.
    10. M. Niemeijer, B. van Ginneken, J. Staal, M. S. A. Suttorp-Schulten, and M. D. Abràmoff, “Automatic detection of red lesions in digital color fundus photographs,” IEEE Trans. Med. Imag., vol. 24, no. 5, pp. 584–92, May 2005.
    11. T. Walter et al., “Automatic detection of microaneurysms in color fundus images,” Med. Image Anal., vol. 11, no. 6, pp. 555–66, 2007.
    12. G. Quellec et al., “Optimal wavelet transform for the detection of microaneurysms in retina photographs,” IEEE Trans.Med. Imag., vol. 27, no. 9, pp. 1230–41, Sep. 2008.
    13. A. Mizutani, C. Muramatsu, Y. Hatanaka, S. Suemori, T. Hara, and H. Fujita, “Automated microaneurysm detection method based on doublering filter in retinal fundus images,” in SPIE Med. Imag. Comput.-Aid. Diagnosis, 2009, vol. 7260, pp. 72601N– 72601N-8.
    14. B. Zhang, X. Wu, J. You, Q. Li, and F. Karray, “Detection of microaneurysms using multi-scale correlation coefficients,” Pattern Recognit., vol. 43, no. 6, pp. 2237–2248, 2010.
    15. I. Lazar and A. Hajdu, “Retinal microaneurysm detection through local rotating cross-section profile analysis,” IEEE Trans. Med. Imag., vol. 32, no. 2, pp. 400–7, Feb. 2013.
    16. C. Sinthanayothin et al., “Automated detection of diabetic retinopathy on digital fundus images,” Diabetic Med. A J. Brit. Diabetic Assoc., vol. 19, no. 2, pp. 105–12, 2002.
    17. S. Ravishankar, A. Jain, and A. Mittal, “Automated feature extraction for early detection of diabetic retinopathy in fundus images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 210–7.
    18. L. Seoud et al., “Automatic detection of microaneurysms and haemorrhages in fundus images using dynamic shape features,” in Proc. IEEE 11th Int. Symp. Biomed. Imag., Beijing, 2014, pp. 101–104.
    19. X. Zhang et al., “Exudate detection in color retinal images for mass screening of diabetic retinopathy,” Med. Image Anal., vol. 18, no. 7,pp. 1026–1043, 2014.
    20.  A. Hoover and M. Goldbaum, “Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels,” IEEE Trans.Med. Imag., vol. 22, no. 8, pp. 951–958, Aug. 2003.
    21. A. D. Fleming, S. Philip, K. A. Goatman, J. A. Olson, and P. F. Sharp, “Automated microaneurysm detection using local contrast normalization and local vessel detection,” IEEE Trans. Med. Imag., vol. 25, no. 9, pp. 1223–32, Sep. 2006.
    22. A. M. Mendonça, A. Sousa, L. Mendonça, and A. Campilho, “Automaticlocalization of the optic disc by combining vascular and intensity information,” Comput. Med. Imag. Graph., vol. 37, no. 5-6, pp.409–17, 2013.
    23. L. Vincent, “Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms,” IEEE Trans. Image Process., vol. 2, no. 2, pp. 176–201, Apr. 1993.
    24. M. Grimaud, “A new measure of contrast : The dynamics,” in SPIE Image Algebra Morphological Image Process., 1992, vol. 1769, pp. 292–305.
    25. N. Beucher and S. Beucher, Hierarchical Queues : General Description and implementation in MAMBA image library ÉCole des Mines de Paris, Tech. rep., 2011.
    26. L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, 2001.
    27. Random Forest Implementation for Matlab [Online]. Available: http://https:/ /code.google.com/p/randomforest-matlab/
    28. A. Liaw and M. Wiener, “Classification and regression by random forest,” R News, vol. 2, no. 3, pp. 18–22, 2002.
    29. M. Niemeijer et al., “Retinopathy online challenge: Automatic detection of microaneurysms in digital color fundus photographs,” IEEE Trans. Med. Imag., vol. 29, no. 1, pp. 185–95, Jan. 2010.
    30. T. Kauppi et al., The DIARETDB1 diabetic retinopathy database and evaluation protocol Tech. Rep, 2007.
    31.  E. Decencière et al., “Feedback on a publicly distributed image database: The Messidor database,” Image Anal. Stereology, vol. 33, pp. 231–234, 2014.
    32. J. Odstrcilik et al., “Retinal vessel segmentation by improved matched filtering: Evaluation on a new highresolution fundus image database,” IET Image Process., vol. 7, no. 4, pp. 373–383, 2013.
    33. E. Trucco et al., “Validating retinal fundus image analysis algorithms:Issues and a proposal,” Invest. Ophthalmol. Vis. Sci., vol. 54, no. 5, pp. 3546–3559, 2013.
    34. C. I. Sanchez et al., “Evaluation of a computeraided diagnosis system for diabetic retinopathy screening on public data,” Invest. Ophthalmol. Vis. Sci., vol. 52, no. 7, pp. 4866–71, 2011.
    35. B. Antal and A. Hajdu, “Improving microaneurysm detection using an optimally selected subset of candidate extractors and preprocessing methods,” Pattern Recognit., vol. 45, no. 1, pp. 264–270, 2012 .
    36. C. Agurto et al., “Multiscale AM-FM methods for diabetic retinopathy lesion detection,” IEEE Trans. Med. Imag., vol. 29, no. 2, pp. 502–12, Feb. 2010.
    37. G. Quellec et al., “A multiple-instance learning framework for diabetic retinopathy screening,” Med. Image Anal., vol. 16, no. 6, pp. 1228–40, 2012.
    38. M. Niemeijer, B. van Ginneken, S. R. Russell, M. S. A. Suttorp- Schulten, and M. D. Abràmoff, “Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis,” Invest. Ophthalmol. Vis. Sci., vol. 48, no. 5, pp. 2260–2267, 2007.
    39. M. D. Abràmoff et al., “Automated analysis of retinal images for detection of referable diabetic retinopathy,” JAMA Ophtalmol., vol. 131 , no. 3, pp. 351–357, 2013.

Recent Article