Open Access Journal

ISSN : 2394-2320 (Online)

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

Open Access Journal

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

ISSN : 2394-2320 (Online)

Reference :

    1. C. Bishop, Pattern Recognition and Machine Learning, http: //www. springer. com /in/ book/ 9780387310732; ISBN: 978-0-387-31073-2
    2. S. Sharma, R. Tiwari, A. Shukla, V. Singh, Identification of People Using Gait Biometrics, International Journal of Machine Learning and Computing 1 (2011) 409–415
    3. G. Vinodhini, R.M. Chandrasekaran, A comparative performance evaluation of neural network based approach for sentiment classification of online reviews, J. King Saud Univ. - Comput. Inf. Sci. 28 (2016) 2–12. doi:10.1016/j.jksuci.2014.03.024.
    4. M. Paliwal, U. a. Kumar, Neural networks and statistical techniques: A review of applications, Expert Syst. Appl. 36 (2009) 2–17. doi:10.1016/j.eswa.2007.10.005.
    5. L.M. Mina, N.O.R. Ashidi, M. a T. Isa, Breast Abnormality Detection in Mammograms Using Artificial Neural Network, (2015) 258–263. doi:10.1109/I4CT.2015.7219577.
    6. P. Li, Y. Wang, J. He, L. Wang, Y. Tian, T.-S. Zhou, et al., High performance personality heartbeat classification model for long-term ECG signal., IEEE Trans. Biomed. Eng. 9294 (2016). doi:10.1109/TBME.2016.2539421
    7. E.P. Ijjina, C. Krishna Mohan, Hybrid deep neural network model for human action recognition, Appl. Soft Comput. 46 (2015) 936–952. doi:10.1016/j.asoc.2015.08.025.
    8. H.K. Lam, U. Ekong, H. Liu, B. Xiao, H. Araujo, S.H. Ling, et al., A study of neural-network-based classifiers for material classification, Neurocomputing. 144 (2014) 367–377. doi:10.1016/j.neucom.2014.05.019.
    9. A. Nazemi, M. Dehghan, A neural network method for solving support vector classification problems, Neurocomputing. 152 (2015) 369–376. doi:10.1016/j.neucom.2014.10.054.
    10. Q. Nie, L. Jin, S. Fei, J. Ma, Neural network for multi-class classification by boosting composite stumps, Neurocomputing. 149 (2015) 949–956. doi:10.1016/j.neucom.2014.07.039.
    11. P. Szymczyk, M. Szymczyk, Classification of geological structure using ground penetrating radar and Laplace transform artificial neural networks, Neurocomputing. 148 (2015) 354–362. doi:10.1016/j.neucom.2014.06.025.
    12. S.T. Sarkar, A.P. Bhondekar, M. Macaš, R. Kumar, R. Kaur, A. Sharma, et al., Towards biological plausibility of electronic noses: A spiking neural network based approach for tea odour classification, Neural Networks. 71 (2015) 142–149. doi:10.1016/j.neunet.2015.07.014.
    13. A. Bahrammirzaee, A comparative survey of artificial intelligence applications in finance: Artificial neural networks, expert system and hybrid intelligent systems, Neural Comput. Appl. 19 (2010) 1165–1195. doi:10.1007/s00521-010-0362-z.
    14. D.O. Cardoso, D.S. Carvalho, D.S.F. Alves, D.F.P. Souza, H.C.C. Carneiro, C.E. Pedreira, et al., Financial credit analysis via a clustering weightless neural classifier, Neurocomputing. 183 (2016) 70–78. doi:10.1016/j.neucom.2015.06.105. 
    15. A. Shukla, R. Tiwari, R. Kala, Real Life Applications of Soft Computing, 2010, CRC Press, Taylor and Francis Group, LLC; ISBN: 978-1-4398-2287-6

Recent Article