Open Access Journal

ISSN : 2394-2320 (Online)

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

Open Access Journal

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

ISSN : 2394-2320 (Online)

Reference :

    1. A. C. Society, Global Cancer Facts & Figures.
    2. S. D. N. D. A. G. O. G. L. Tabar, G. Fagerberg, “Update of the Swedish two-county program of mammographic screening for breast cancer,” Radiol. Clin. N. Am., vol. 02, no. 30, pp. 187–210, 1992.
    3. P. S. L. V. R. R. S. Shapiro, W. Venet, “Selection, follow-up and analysis in the health insurance plan study: a randomized trial with breast cancer screening,” J. Natl. Cancer Inst. Monogr., vol. 03, no. 67, pp. 65–74, 1985.
    4. B. C. S. W. L.L. Humphrey, M. Helfand, “Breast cancer screening: a summary of the evidence for the u.s. preventive services task force,” Ann. Intern. Med., vol. 04, no. 137, pp. 347–367, 2002.
    5. D. S. G. W. F.M. Hall, J.M. Storella, “Nonpalpable breast lesions: Recommendations for biopsy based on suspicion of carcinoma at mammography,” Radiology, vol. 167, no. 167, pp. 353–358, 1988.
    6. G. W. P. J. S. E. H. D.A. Hall, C.A. Hulka, “Positive predictive value of breast biopsy performed as a result of mammography: there is no abrupt change at age 50 years,” Radiology, vol. 200, pp. 357–360, 1996.
    7. R. B.-B. B. G. J. L. R. D. R. R. S.-B. B. Y. E.A. Sickles, D.L. Migioretti, “Performance benchmarks for diagnostic mammography,” Radiology, vol. 235, pp. 775– 790, 2005.
    8. A. K.-L. H. G. A. R. S. J. H. S. D. Gur, L.P. Wallace, “Trends in recall, biopsy, and positive biopsy rates for screening mammography in an academic practice,” Radiology, vol. 235, pp. 396–401, 2005.
    9. L. A.-E. S. C. L. B. M. G. P. C. K. K. D. B. D. W. W. B. R. B.-B. R.D. Rosenberg, B.C. Yankaskas, “Performance benchmarks for screening mammography,” Radiology, vol. 241, pp. 55–66, 2006.
    10. M. U. T.W. Freer, “Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center,” Radiology, vol. 220, pp. 781–786, 2001.
    11. D. I. R.L. Birdwell, P. Bandodkar, “Computer-aided detection with screening mammography in a university hospital setting,” Radiology, vol. 236, pp. 451–457, 2005.
    12. J. R. T.E. Cupples, J.E. Cunningham, “Impact of computer-aided detection in a regional screening mammography program,” AJR, vol. 185, pp. 944–950, 2005.
    13. M. R.-T. W. D. A. C. P. J. S. N. S. S.-G. H.P. Chan, B. Sahiner, “Improvement of radiologists characterization of mammographic masses by using coputer-aided diagnosis an roc study,” Radiology, vol. 212, pp. 817– 827, 1999.
    14. C. V.-C. M. Z. Huo, M.L. Giger, “Breast cancer: effectiveness of computer-aided diagnosis observer study with independent database of mammograms,” Radiology, vol. 224, pp. 560–568, 2002.
    15. R. S.-C. M. M. G. K. D. Y. Jiang, R.M. Nishikawa, “Improving breast cancer diagnosis with computer-aided diagnosis,” Acad. Radiol., vol. 06, pp. 22–32, 1999.
    16. J. L. D. R.M. Rangayyan, F.J. Ayres, “A review of computer-aided diagnosis of breast cancer: toward the detection of subtle signs,” J. Frankl. Inst., vol. 344, pp. 312–348, 2007.
    17. A. H. M. Elter, “Cadx of mammographic masses and clustered microcalcifications: a review,” Med. Phys., vol. 36, pp. 2052–2068, 2009.
    18. B. Z. M. Tan, J. Pu, “Optimization of breast mass classification using sequential forward floating selection (sffs) and a support vector machine (svm) model,” Int. J CARS, vol. 09, pp. 1005–1020, 2014.

Recent Article