Author : Jasbir Kaur 1
Date of Publication :12th September 2017
Abstract: Let be a Galois ring of characteristic and cardinality . Let be a cyclic code of arbitrary length over , viewed as ideals of , - The generators of in terms of minimal degree polynomials of certain subsets of have been obtained by Kaur et al. [6]. In this paper, using the structure of cyclic codes over a Galois ring given in [6], the generators of cyclic code of arbitrary length over , the ring of integers modulo 8 have been obtained in a unique form. Further, using the p-adic representation for the coefficients of these generators of cyclic codes over some results involving the generators have been proved. Cyclic codes over modular rings have applications in code- division multiple access (CDMA) cellular radio communication systems and M-PSK (M-ary Phase Shift Keying) channel.
Reference :
-
- Abualrub T., Oehmke R., Cyclic codes of length over , Discrete Appl. Math., 128(1), 3--9 (2003).
- Abualrub T., Siap I., Cyclic codes over and Des. Codes. Cryptogr., 14, 273--287 (2007).
- Al-Ashker M., Hamoudeh M., Cyclic codes over ,Turkish J. Math., 35, 737--749 (2011).
- Calderbank A. R., Sloane N. J. A., Modular and adic cyclic codes, Des. Codes Cryptogr., 6(1), 21--35 (1995).
- Dougherty S. T., Park Y. H., On modular cyclic codes, Finite Fields Appl., 13, 31--57 (2007).
- Kaur J., Dutt S., Sehmi R., Cyclic codes over Galois rings, In: Govindarajan S., Maheshwari A. (eds) Algorithms and Discrete Applied Mathematics, Lecture Notes in Computer Science (LNCS) 9602, 233--239 (2016).
- Kaur J., Dutt S., Sehmi R., On cyclic codes over Galois rings, Communicated.
- Kumar P. V., Large families of quaternary sequences with low correlation. IEEE Transactions on Information Theory, 42(2), 579-592 (1996).
- L ̈pez-Permouth S. R., ̈zadam H., ̈zbudak F., Szabo S., Polycyclic codes over Galois rings with applications to repeatedroot constacyclic codes. Finite Fields Appl., 19(1), 16-38 (2012).
- Piret P. M., Algebraic construction of cyclic codes over with a good Euclidean minimum distance, IEEE Transactions on Information Theory, 41(3), 815-818 (1995).
- Sobhani R., Molakarimi M., Some results on cyclic codes over the ring , Turkish J. Math., 37, 1061--1074 (2013).
- Wan Z. X., Finite fields and Galois rings, World Scientific Publishing Company, (2011)