Open Access Journal

ISSN : 2394-2320 (Online)

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

Open Access Journal

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

ISSN : 2394-2320 (Online)

Reference :

    1. Aggarwal G, Feder T, Kenthapadi K, Motwani R, Panigrahy R, Thomas D, Zhu A. (2005). Anonymizing tables. In: Proceedings of the international conference on database theory (ICDT), vol 3363, Springer, Berlin, pp 246–258.
    2. Clifton C. (2009). Privacy-preserving data mining. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer, US, pp 2147– 2150. 
    3. El Emam K, Dankar FK. (2008). Protecting privacy using k-anonymity. J Am Med Inform Assoc 15(5):627–637.
    4. Friedman A, Schuster A, Wolff R. (2008). Providing k-anonymity in data mining. Int J Very Large Databases 17:789–804.
    5. Gedik B, Liu L. (2008). Protecting location privacy with personalized k-anonymity: architecture and algorithms. IEEE Trans Mob Comput 7(1):1–18.
    6. Han J, Luo F, Lu J, Peng H. (2013). SLOMS: A privacy preserving data publishing method for multiple sensitive attributes micro data. J Softw 8(12):3096–3104.
    7. http://archive.ics.uci.edu/ml/datasets/Heart+Dise ase
    8. Iyengar VS. (2002). Transforming data to satisfy privacy constraints. In: Proceedings of the eighth ACM SIGKDD, interna-tional conference on knowledge discovery and data mining, pp 279– 288.
    9. Kantarcioglu M, Jin J, Clifton C. (2004). When do data mining results violate privacy? In: Proceedings of the tenth ACM SIGKDD, international conference on knowledge discovery and data mining, 22 August 2004.
    10.  LeFevre K, DeWitt DJ, Ramakrishnan R. (2008). Workload-aware anonymization techniques for large-scale datasets. ACM Trans Database Syst 33(3):17:1–17:47.

Recent Article