Open Access Journal

ISSN : 2394-2320 (Online)

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

Open Access Journal

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

ISSN : 2394-2320 (Online)

Reference :

    1. G. Bell, A. Hey, and A. Szalay, “Beyond the data deluge,”Science 323 AAAS, vol. 39, 2006.
    2. J. Han, Data Mining: Concepts and Techniques. MorganKaufmann, San Francisco, CA, USA, 2005.
    3. J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,” 2004, pp. 137–150. [Online].Available:http://www.usenix.org/events/osdi04/t ech/dean.html
    4. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Complete Reference. MIT Press Cambridge, MA, USA, 1995.
    5. (2011) Apache software foundation, hadoop mapreduce. [Online]. Available: http://hadoop.apache.org/mapreduce
    6. (2011) Disco mapreduce framework. [Online]. Available:http://discoproject.org
    7. (2011) Hadoop - facebook engg, note. [Online]. Available: http://www.facebook.com/note.php?noteid=161 21578919
    8. (2011) Yahoo inc. hadoop at yahoo! [Online]. Available:http://developer.yahoo.com/Hadoop
    9. T. Gunarathne, T. Wu, J. Qiu, and G. Fox, “Cloud computing paradigms for pleasingly parallel biomedical applications,” in Proceedings of 19th ACM International Symposium on High Performance Distributed Computing. ACM, January 2010, pp. 460–469.
    10. S. Krishnan, C. Baru, and C. Crosby, “Evaluation of mapreduce for gridding lidar data,” in Proceedings of the CLOUDCOM ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 33–40.
    11. Z. Weizhong, M. Huifang, and H. Qing, “Parallel kmeans clustering based on mapreduce,” in Proceedings of the CloudCom ’09. Berlin, Heidelberg: SpringerVerlag, 2009, pp. 674–679.
    12. L. Guang, W. Gong-Qing, H. Xue-Gang, Z. Jing, L. Lian, and W. Xindong, “K-means clustering with bagging and mapreduce,” in Proceedings of the 2011 44th Hawaii International Conference on System Sciences. Washington, DC, USA: IEEE Computer Society, 2011, pp. 1–8.
    13. S. Papadimitriou and J. Sun, “Disco: Distributed coclustering with map-reduce: A case study towards petabyte-scale end-to-end mining,” in Proc. of the IEEE ICDM ’8, Washington, DC, USA, 2008, pp. 512–521.
    14. E. Alina, I. Sungjin, and M. Benjamin, “Fast clustering using mapreduce,” in Proceedings of KDD ’11. NY, USA: ACM, 2011, pp. 681–689.
    15. F. Cordeiro, “Clustering very large multidimensional datasets with mapreduce,” in Proceedings of KDD ’11. NY, USA: ACM, 2011, pp. 690–698.

Recent Article