Open Access Journal

ISSN : 2394-2320 (Online)

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

Open Access Journal

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

ISSN : 2394-2320 (Online)

Reference :

    1. 1. LI Zhao, ZHANG Chuang, CHEN Meng-meng, XU Ke-fu.,“SpeedStream: a Real-time Stream Processing Platform in the Cloud” International Conference on Computer Engineering, November. 2014.
    2. 2. hao δ, Chuang Z, Ke-Fu X, et al. “A Computing model for Real-Time Stream Processing, Cloud Computing and Big Data”, International Conference on. IEEE, 134-137, 2014.
    3. 3. Zhengping Qian, Yong He, Chunzhi Su, et al. TimeStream: Reliable Stream Computation in the Cloud. EuroSys, 2013:1-14.
    4. 4. Schmidt S., δegler T., Schaller D., et al. Realtime Scheduling for Data Stream management Systems. Real-Time Systems, 2005.
    5. 5. Mishne, G., Dalton, J., Li, Z., Sharma, A., & Lin, J.,. Fast data in the era of big data: Twitter's real-time related query suggestion architecture. In Proceedings of he ACM SIGMOD International Conference on Management of Data (pp. 1147-1158), 2013.
    6. 6. Abraham, B. and Chuang, A., Outlier detection and time series modeling. Technometrics, pp-241–248, 1989.
    7. 7. Abe N., Zadrozny B., A Langford, “Outlier detection by active learning” In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, New York, 504–5, 2006.
    8. 8. E. Czaplicki and S. Chong. “Asynchronous functional reactive programming for GUIs. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’13, pages 411–422, New York, NY, USA, 2013
    9. 9. C. Elliott and P. Hudak. “Functional reactive animation” In Proceedings of the Second ACM SIGPLAN International Conference on Functional Programming, ICFP ’97, pages 263–273, New York, NY, USA, 1997.
    10. 10. T. Salmon, D. Bhamare, A. Erbad, R. Jain, M. Samaka, "Machine Learning for Anomaly Detection and Categorization in Multi-cloud Environments," The 4th IEEE International Conference on Cyber Security and Cloud Computing (IEEE Cloud 2017), New York, June 26-28, 2017.
    11. 11. Li, H., Achim, A., Bull, D.: “Unsupervised video anomaly detection using feature clustering”, IET Signal Proc. 6, 521–533, 2012.
    12. 12. Fangjin Yang, Eric Tschetter, “Druid: A Realtime Analytical Data Store”, SIGMOD '14 Proceedings of the ACM SIGMOD international conference on Management of data, June 2014
    13. 13. Samy Chambi, Daniel Lemire, Robert Godin, Kamel Boukhalfa, Charles R. Allen, Fangjin Yang, “Optimizing Druid with Roaring bitmaps”, IDEAS '16: Proceedings of the 20th International Database Engineering & Applications Symposium, July 2016.
    14. 14. Apache Kafka. http://kafka.apache.org/
    15. 15. Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino, Deep Ganguli, “Druid: a realtime analytical data store”, SIGMOD '14: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, June 2014.
    16. 16. E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and W. d. Meuter. A survey on reactive programming. ACM Comput. Surv., 45(4):52:1–52:34, Aug. 2013. ISSN 0360-0300. doi: 10.1145/2501654.2501666
    17. 17. Laura Rettig, Mourad Khayati,”Online Anomaly Detection over Big Data Streams”, ´IEEE International Conference on Big Data, Switzerland, 2015.

Recent Article