Open Access Journal

ISSN : 2394-2320 (Online)

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

Open Access Journal

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

ISSN : 2394-2320 (Online)

Reference :

    1. D. Jiang, C. Tang, A. Zhang, Cluster analysis for gene expression data: A survey, IEEE Trans. Knowl. Data Eng. 16 (2004) 1370–1386.
    2. R.C. Wu, R.S. Chen, C.C. Chang, J.Y. Chen, Data mining application in customer relationship management of credit card business, in: Proceedings of interna- tional conference on Computer software and applications, 2005, pp. 39–40.
    3. S.K. Bhatia, J.S. Deogun, Conceptual clustering in information retrieval, IEEE Trans. Syst. Man Cybern. 28 (1998) 427–436.
    4. J. Zhang, J. Mostafa, H. Tripathy, Information retrieval by semantic analysis and visualisation of the concept space of D-Lib magazine, D-Lib Mag. 8 (2002).
    5. J.A.F. Costa, M. de Andrade Netto, Cluster analysis using self-organising maps and image processing techniques, Proc. IEEE Int. Conf. Syst. Man Cybern. 5 (1999) 367–372.
    6. H. Tao, T.S. Huang, Color image edge detection using cluster analysis, in: Proceedings of IEEE International Conference on Image Processing, 1997, pp. 834–836.
    7. G.S. Day, R.M. Heeler, Using cluster analysis to improve marketing experi- ments, J. Market. Res. 8 (1971) 340–347.
    8. A.G. Sheppard, The sequence of factor analysis and cluster analysis: Differ- ences in segmentation and dimensionality through the use of raw and factor scores, Tourism Anal. 1 (1996) 49–57. [9] D.B. Henry, P.H. Tolan, D. Gorman-Smith, Cluster analysis in family psychol- ogy research, J. Family Psychol. 19 (2005) 121–132.
    9. K. Kim, H. Ahn, A recommender system using GA K-means clustering in an online shopping market, Expert Syst. Appl. 34 (2008) 1200–1209. 
    10. M. Bredel, C. Bredel, D. Juric, G. Harsh, H. Vogel, L. Recht, B. Sikic, Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas, Cancer Res. 65 (2005) 8679– 8689. 
    11. E. Kim, S. Kim, D. Ashlock, D. Nam, MULTI-K: Accurate classification of microarray subtypes using ensemble k-means clustering, BMC Bioinform. 10 (2009) 260.
    12. T. Sorlie, R. Tibshirani, J. Parker, T. Hastie, J. Marron, A. Nobel, S. Deng, H. Johnsen, R. Pesich, S. Geisler, Repeated observation of breast tumor subtypes in independent gene expression data sets, Proc. Natl. Acad. Sci. USA 100 (2003) 8418–8423.
    13. A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: A review, ACM Comput. Survey 31 (1999) 264–323.
    14. A. Ahmad, L. Dey, A k-mean clustering algorithm for mixed numeric and categorical data, Data Knowl. Eng. 63 (2007) 503–527.
    15. Z. Huang, Claustering large data sets with mixed numeric and categorical values, in: Proceedings of the First Pacific Asia Knowledge Discovery and Data Mining Conference, 1997, pp. 21–34.
    16. S. Dudoit, J. Fridyand, A prediction-based resampling method for estimating the number of clusters in a dataset, Genome Biol. 3 (2002) RESEARCH0036.
    17. T. Boongoen, Q. Shen, Nearest-neighbour guided evaluation of data reliability and its applications, IEEE Trans. Syst. Man Cybern. B 40 (2010) 1622–1633.
    18.  W.M. Rand, Objective criteria for the evaluation of clustering methods, J. Amer. Statist. Assoc. 66 (1971) 846–850.
    19. N. Iam-On, T. Boongoen, S. Garrett, LCE: A linkbased cluster ensemble method for improved gene expression data analysis, Bioinformatics 26 (2010) 1513– 1519.

Recent Article