Open Access Journal

ISSN : 2394-2320 (Online)

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

Open Access Journal

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

ISSN : 2394-2320 (Online)

Reference :

    1. Y. Luo, J. Remillard, and D. Hoetzer, “Pedestrian detection in near-infrared night vision system,” in IEEE Intelligent Vehicles Symposium, Proceedings, 2010, doi: 10.1109/IVS.2010.5548089.
    2. D. Tomè, F. Monti, L. Baroffio, L. Bondi, M. Tagliasacchi, and S. Tubaro, “Deep Convolutional Neural Networks for pedestrian detection,” Signal Process. Image Commun., 2016, doi: 10.1016/j.image.2016.05.007.
    3. V. John, S. Mita, Z. Liu, and B. Qi, “Pedestrian detection in thermal images using adaptive fuzzy C-means clustering and convolutional neural networks,” in Proceedings of the 14th IAPR International Conference on Machine Vision Applications, MVA 2015, 2015, doi: 10.1109/MVA.2015.7153177.
    4. K. Piniarski, P. PawÅ‚owski, and A. DÄ…browski, “Pedestrian detection by video processing in automotive night vision system,” in Signal Processing - Algorithms, Architectures, Arrangements, and Applications Conference Proceedings, SPA, 2015, doi: 10.21275/v5i4.nov163154.
    5. D. F. Llorca, M. A. Sotelo, I. Parra, M. Ocaña, and L. M. Bergasa, “Error analysis in a stereo vision-based pedestrian detection sensor for collision avoidance applications,” Sensors, 2010, doi: 10.3390/s100403741.
    6. C. Wojek, S. Walk, S. Roth, and B. Schiele, “Monocular 3D scene understanding with explicit occlusion reasoning,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2011, doi: 10.1109/CVPR.2011.5995547.
    7. S. Silberstein, D. Levi, V. Kogan, and R. Gazit, “Vision-based pedestrian detection for rear-view cameras,” in IEEE Intelligent Vehicles Symposium, Proceedings, 2014, doi: 10.1109/IVS.2014.6856399.
    8. D. O. Pop, A. Rogozan, F. Nashashibi, and A. Bensrhair, “Fusion of stereo vision for pedestrian recognition using convolutional neural networks,” in ESANN 2017 - Proceedings, 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2017.
    9. S. D. Casey, “Adaptive signal processing,” in Applied and Numerical Harmonic Analysis, 2015.
    10. S. Wager, S. Wang, and P. Liang, “Dropout training as adaptive regularization,” in Advances in Neural Information Processing Systems, 2013.

Recent Article