Open Access Journal

ISSN : 2394-2320 (Online)

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

Open Access Journal

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

ISSN : 2394-2320 (Online)

Reference :

    1. L. G. Caldas and L. K. Norford, “A design optimization tool based on a genetic algorithm,” Autom. Constr., 2002, doi: 10.1016/S0926- 5805(00)00096-0.
    2.  M. Jaderberg et al., “Human-level performance in 3D multiplayer games with population-based reinforcement learning,” Science (80-. )., 2019, doi: 10.1126/science.aau6249.
    3. I. Inza, P. Larrañaga, R. Etxeberria, and B. Sierra, “Feature Subset Selection by Bayesian network-based optimization,” Artif. Intell., 2000, doi: 10.1016/S0004-3702(00)00052-7.
    4. B. A. Jensen, B. Joseph, and B. G. Lipták, “Expert systems,” in Instrument Engineers Handbook, Fourth Edition: Process Control and Optimization, 2005.
    5. A. Chaouachi, R. M. Kamel, R. Andoulsi, and K. Nagasaka, “Multiobjective intelligent energy management for a microgrid,” IEEE Trans. Ind. Electron., 2013, doi: 10.1109/TIE.2012.2188873.
    6. F. Herrera, M. Lozano, and J. L. Verdegay, “Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis,” Artif. Intell. Rev., 1998, doi: 10.1023/A:1006504901164.
    7. P. Parandoush and A. Hossain, “A review of modeling and simulation of laser beam machining,” International Journal of Machine Tools and Manufacture. 2014, doi: 10.1016/j.ijmachtools.2014.05.008.
    8. T. Khatib, A. Mohamed, and K. Sopian, “A review of photovoltaic systems size optimization techniques,” Renewable and Sustainable Energy Reviews. 2013, doi: 10.1016/j.rser.2013.02.023.
    9. M. Bahram, A. Wolf, M. Aeberhard, and D. Wollherr, “A prediction-based reactive driving strategy for highly automated driving function on freeways,” in IEEE Intelligent Vehicles Symposium, Proceedings, 2014, doi: 10.1109/IVS.2014.6856503.
    10. R. Quiza Sardiñas, M. Rivas Santana, and E. Alfonso Brindis, “Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes,” Eng. Appl. Artif. Intell., 2006, doi: 10.1016/j.engappai.2005.06.007.

    1. L. G. Caldas and L. K. Norford, “A design optimization tool based on a genetic algorithm,” Autom. Constr., 2002, doi: 10.1016/S0926- 5805(00)00096-0.
    2.  M. Jaderberg et al., “Human-level performance in 3D multiplayer games with population-based reinforcement learning,” Science (80-. )., 2019, doi: 10.1126/science.aau6249.
    3. I. Inza, P. Larrañaga, R. Etxeberria, and B. Sierra, “Feature Subset Selection by Bayesian network-based optimization,” Artif. Intell., 2000, doi: 10.1016/S0004-3702(00)00052-7.
    4. B. A. Jensen, B. Joseph, and B. G. Lipták, “Expert systems,” in Instrument Engineers Handbook, Fourth Edition: Process Control and Optimization, 2005.
    5. A. Chaouachi, R. M. Kamel, R. Andoulsi, and K. Nagasaka, “Multiobjective intelligent energy management for a microgrid,” IEEE Trans. Ind. Electron., 2013, doi: 10.1109/TIE.2012.2188873.
    6. F. Herrera, M. Lozano, and J. L. Verdegay, “Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis,” Artif. Intell. Rev., 1998, doi: 10.1023/A:1006504901164.
    7. P. Parandoush and A. Hossain, “A review of modeling and simulation of laser beam machining,” International Journal of Machine Tools and Manufacture. 2014, doi: 10.1016/j.ijmachtools.2014.05.008.
    8. T. Khatib, A. Mohamed, and K. Sopian, “A review of photovoltaic systems size optimization techniques,” Renewable and Sustainable Energy Reviews. 2013, doi: 10.1016/j.rser.2013.02.023.
    9. M. Bahram, A. Wolf, M. Aeberhard, and D. Wollherr, “A prediction-based reactive driving strategy for highly automated driving function on freeways,” in IEEE Intelligent Vehicles Symposium, Proceedings, 2014, doi: 10.1109/IVS.2014.6856503.
    10. R. Quiza Sardiñas, M. Rivas Santana, and E. Alfonso Brindis, “Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes,” Eng. Appl. Artif. Intell., 2006, doi: 10.1016/j.engappai.2005.06.007.

Recent Article