Open Access Journal

ISSN : 2394-2320 (Online)

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

Open Access Journal

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

ISSN : 2394-2320 (Online)

Neural biomarkers for dyslexia detection using Machine Learning: A Review

Author : Mallikarjun Nuchhi 1 Sagar Hegde 2 Pavan Kalyan 3 Prakruthi Prasad 4 Rohan P 5 Dr. Anusha Preetham 6

Date of Publication :1st December 2022

Abstract: Dyslexia can be defined as a neurological disease that is branded by sloppy word understanding and overall deprived interpretation skills. It impacts a large number of school-aged kids, with boys being disproportionately affected, placing them at risk for poor academic achievement for the rest of their lives. Long-term, researchers want to develop a dyslexia diagnostic tool based on neural biomarkers. In this regard, a significant range of machine learning and, more recently, deep learning approaches have been deployed with above-chance classification accuracy across diverse types of data sets. In this paper, we carefully examine the latest machine learning techniques to detect this disease and its biomarkers.

Reference :

    1. A. Elnakib, A. Soliman, M. Nitzken, M. F. Casanova, G. Gimel'farb, and A. El-Baz,``Magnetic resonance imaging _ndings for dyslexia: A review,'' J. Biomed. Nanotechnol., vol. 10, no. 10, pp. 2778_2805, Oct. 2014, doi:10.1166/jbn.2014.1895.
    2. J. M. Fletcher et al., ``Classi_cation of learning disabilities: An evidencebased evaluation,'' in Identi_cation of Learning Disabilities: Research to Practice, R. Bradley, L. Danielson, and D. P. Hallahan, Eds. Washington, DC, USA: Erlbaum Associates Publishers, Jan. 2002, pp. 185_250.
    3. P. Tamboer, H. C. M. Vorst, S. Ghebreab, and H. S. Scholte, ``Machine learning and dyslexia: Classi_cation of individual structural neuroimaging scans of students with and without dyslexia,'' NeuroImage: Clin., vol. 11, pp. 508_514, 2016, doi: 10.1016/j.nicl.2016.03.014
    4. S. O. Wajuihian, ``Neurobiologyof developmental dyslexia Part 1: A review of evidence from autopsy and structural neuro- imaging studies,'' Optometry Vis. Develop., vol. 43, no. 3, pp. 121_131, 2012.
    5. S. O. Wajuihian and K. S. Naidoo,``Dyslexia: An overview,'' Afr. Vis. Eye Health, vol. 70, no. 2, pp. 89_98, Dec. 2011, doi: 10.4102/aveh.v70i2.102.
    6. B. Sarah, C. Nicole, H. Ardag, M. Madelyn, S.K. Holland, and H. Tzipi, ``An fMRI Study of a Dyslexia biomarker,'' J. Young Investigators, vol. 26, no. 1, pp. 1_4, 2014.
    7. 7. Association International Dyslexia, Baltimore, MD, USA. (2017). Dyslexia in the Classroom_What Every Teacher Needs to Know. [Online]. Available: www.DyslexiaIDA.org
    8. N. A. M. Yuzaidey, N. C. Din, M. Ahmad, N. Ibrahim, R. A. Razak, and D. Harun, ``Interventions for children with dyslexia: A review on current intervention methods,'' Med. J. Malaysia, vol. 73, no. 5, pp. 311_320, Oct. 2018.
    9. S. Kaisar, ``Developmental dyslexia detection using machine learning techniques: A survey,'' ICT Exp., vol. 6, no. 3, pp. 181_184, 2020, doi: 10.1016/j.icte.2020.05.006.
    10. F. Ramus, I. Altarelli, K. Jednoróg, J. Zhao, and L. Scotto di Covella, ``Neuroanatomy of developmental dyslexia: Pitfalls and promise,'' Neurosci. Biobehav. Rev., vol. 84, pp. 434_452, Jan. 2018, doi: 10.1016/j.neubiorev.2017.08.001.
    11. T. R. Vidyasagar, ``Visuo-spatial attention,'' Clin. Exp. Optom., vol. 87, no. 1, pp. 4_10, 2004. [12] L. Danelli, M. Berlingeri, G. Bottini, F. Ferri,L. Vacchi, M. Sberna, and E. Paulesu,
    12. Neural intersections of the phonological, visual magnocellular and motor/cerebellar systems in normal readers: Implications for imaging studies on dyslexia,'' Hum. Brain Mapping, vol. 34, no. 10, pp. 2669_2687, Oct. 2013, doi: 10.1002/hbm.22098
    13. U. Kuhl, N. E. Neef, I. Kraft, G. Schaadt, L. Dörr, J. Brauer, I. Czepezauer, B. Müller, A. Wilcke, H. Kirsten, F. Emmrich, J. Boltze, A. D. Friederici, and M. A. Skeide, ``The emergence of dyslexia in the developing brain,'' NeuroImage, vol. 211, May 2020, Art. no.116633, doi: 10.1016/j.neuroimage.2020.116633.
    14. S. M. Irby and R. G. Floyd, ``Test review: Wechsler abbreviated scale of intelligence, second edition,'' Can. J. School Psychol., vol.28, no. 3, pp. 295_299, Sep. 2013, doi: 10.1177/0829573513493982.
    15. C. A. Dell, B. Harrold, and T. Dell, ``Test Review: Wilkinson, G. S., & Robertson, G. J. (2006). wide range achievement Test- Fourth
    16. Edition. Lutz, FL: Psychological Assessment Resources. WRAT4 Introductory Kit (includes manual, 25 test/response forms [blue and green], and accompanying test mat,'' Rehabil. Couns. Bull., vol. 52, no. 1, pp. 57_60, 2008, doi: 10.1177/0034355208320076.
    17. B. J.Wending, F. A. Schrank, and A. J. Scmitt, ``Educational interventions related to the Woodcock-Johnson III test of achievement,'' in Woodcock- Johnson III Assessment Service Bulletin Number, vol. 8, no. 8. Rolling Meadows IL, USA: Riverside Publishing, A Houghton Mif_in Company, 2007, pp. 1_30.
    18. J.-J. Mitchell, ``Comprehensive test of phonological processing,'' Assessment Effective Intervent, vol. 26, no. 3, pp. 57_63, Apr. 2001, doi: 10.1177/073724770102600305.
    19. R. M. Brunoand S. C. Walker, ``Comprehensive test of phonological processing (CTOPP),'' Diagnostique, vol. 24, nos. 1_4, pp. 69_82, Mar. 1999, doi: 10.1177/153450849902401-408.

Recent Article