Open Access Journal

ISSN : 2394-2320 (Online)

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

Open Access Journal

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

ISSN : 2394-2320 (Online)

Reference :

    1. D. Maltoni, D. Miao, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition, 2nd ed. London, U.K.: Springer-Verlag, 2009.
    2. N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE Trans. Comput., vol. C-23, no. 1, pp. 90–93, Jan. 1974.
    3. C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Transforms: A Primer. Upper Saddle River, NJ, USA: Prentice-Hall, 1998.
    4. W. Pennebaker and J. Mitchell, JPEG—Still Image Compression Standard.New York, NY, USA: Van Nostrand Reinhold, 1993.
    5. M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek,“An overview of JPEG-2000,” in Proc. IEEE Data Compress. Conf.,Mar. 2000, pp. 523–541.
    6. A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 stillimage compression standard,” IEEE Signal Process. Mag., vol. 11, no. 5,pp. 36–58, Sep. 2001.
    7. T. Hopper, C. Brislawn, and J. Bradley, “WSQ grayscale fingerprintimage compression specification,” Federal Bureau of Investigation,Criminal Justice Information Services, Washington, DC, USA, Tech.Rep. IAFIS-IC0110-V2, Feb. 1993
    8. C. M. Brislawn, J. N. Bradley, R. J. Onyshczak, and T. Hopper, “FBI compression standard for digitized fingerprint images,” Proc. SPIE,vol. 2847, pp. 344–355, Aug. 1996.
    9. A. Said and W. A. Pearlman, “A new, fast, and efficient image codecbased on set partitioning in hierarchical trees,” IEEE Trans. CircuitsSyst. Video Technol., vol. 6, no. 3, pp. 243–250, Jun. 1996.
    10. R. Sudhakar, R. Karthiga, and S. Jayaraman, “Fingerprint compressionusing contourlet transform with modified SPIHT algorithm,” IJECEIranian J. Electr. Comput. Eng., vol. 5, no. 1, pp. 3–10, 2005.
    11. S. G. Mallat and Z. Zhang, “Matching pursuits with timefrequencydictionaries,” IEEE Trans. Signal Process., vol. 41, no. 12,pp. 3397–3415, Dec. 1993.
    12. S. S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev., vol. 43, no. 1, pp. 129–159, 2001.
    13. J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust facerecognition via sparse representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.
    14. M. Elad and M. Aharon, “Image denoising via sparse and redundant representation over learned dictionaries,” IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736– 3745, Dec. 2006.
    15. S. Agarwal and D. Roth, “Learning a sparse representation for object detection,” in Proc. Eur. Conf. Comput. Vis., 2002, pp. 113–127.

Recent Article