Open Access Journal

ISSN : 2394-2320 (Online)

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

Open Access Journal

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

ISSN : 2394-2320 (Online)

Reference :

    1. H. Lee, P. Ferguson, N. O’Hare, C. Gurrin, and A. F. Smeaton, “Integrating interactivity into visualising sentiment analysis of blogs,” in Proceedings of the first international workshop on Intelligent visual interfaces for text analysis, 2010, pp. 17–20.
    2. L. Zhang, K. Hua, H. Wang, G. Qian, and L. Zhang, “Sentiment Analysis on Reviews of Mobile Users,” Procedia Comput. Sci., vol. 34, pp. 458–465, 2014.
    3. E. Cambria, B. Schuller, Y. Xia, and C. Havasi, “New avenues in opinion mining and sentiment analysis,” IEEE Intell. Syst., no. 2, pp. 15–21, 2013.
    4. A. Bermingham and A. F. Smeaton, “Classifying sentiment in microblogs: is brevity an advantage?,” in Proceedings of the 19th ACM international conference on Information and knowledge management, 2010, pp. 1833– 1836.
    5. A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification using distant supervision,” CS224N Proj. Rep. Stanf., vol. 1, p. 12, 2009.
    6. A. Pak and P. Paroubek, “Twitter as a Corpus for Sentiment Analysis and Opinion Mining.,” in LREC, 2010, vol. 10, pp. 1320–1326.
    7. F. Benamara, C. Cesarano, A. Picariello, D. R. Recupero, and V. S. Subrahmanian, “Sentiment Analysis: Adjectives and Adverbs are better than Adjectives Alone.,” in ICWSM, 2007.
    8. M. Hu and B. Liu, “Mining and summarizing customer reviews,” in Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, 2004, pp. 168–177.
    9. V. K. Singh, R. Piryani, A. Uddin, and P. Waila, “Sentiment analysis of Movie reviews and Blog posts,” in Advance Computing Conference (IACC), 2013 IEEE 3rd International, 2013, pp. 893–898
    10. M. Eirinaki, S. Pisal, and J. Singh, “Feature-based opinion mining and ranking,” J. Comput. Syst. Sci., vol. 78, no. 4, pp. 1175–1184, Jul. 2012.
    11. E. Kouloumpis, T. Wilson, and J. Moore, “Twitter sentiment analysis: The good the bad and the omg!,” Icwsm, vol. 11, pp. 538–541, 2011.
    12. A. Amolik, N. Jivane, M. Bhandari, and M. Venkatesan, “Twitter Sentiment Analysis of Movie Reviews using Machine Learning Techniques.,” Int. J. Eng. Technol., vol. 7, no. 6, pp. 2038–2044, 2015
    13. M. S. Neethu and R. Rajasree, “Sentiment analysis in twitter using machine learning techniques,” in Computing, Communications and Networking Technologies (ICCCNT), 2013 Fourth International Conference on, 2013, pp. 1–5. 
    14. J. Akaichi, Z. Dhouioui, and M. J. Lopez-Huertas Perez, “Text mining facebook status updates for sentiment classification,” in System Theory, Control and Computing (ICSTCC), 2013 17th International Conference, 2013, pp. 640–645.
    15. Z. Zhai, H. Xu, B. Kang, and P. Jia, “Exploiting effective features for chinese sentiment classification,” Expert Syst. Appl., vol. 38, no. 8, pp. 9139–9146, Aug. 2011.
    16. A. Abbasi, S. France, Z. Zhang, and H. Chen, “Selecting Attributes for Sentiment Classification Using Feature Relation Networks,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 3, pp. 447–462, Mar. 2011.
    17. K. V. Ghag and K. Shah, “ARTFSC–Average Relative Term Frequency Sentiment Classification,” Int. J. Comput. Technol., vol. 12, no. 6, pp. 3591–3601, 2014.
    18. E. Haddi, X. Liu, and Y. Shi, “The Role of Text Pre-processing in Sentiment Analysis,” Procedia Comput. Sci., vol. 17, pp. 26–32, 2013
    19. Z.-H. Deng, K.-H. Luo, and H.-L. Yu, “A study of supervised term weighting scheme for sentiment analysis,” Expert Syst. Appl., vol. 41, no. 7, pp. 3506–3513, Jun. 2014.
    20. A. Mukwazvure and K. P. Supreethi, “A hybrid approach to sentiment analysis of news comments,” in Reliability, Infocom Technologies and Optimization (ICRITO)(Trends and Future Directions), 2015 4th International Conference on, 2015, pp. 1–6.
    21. S. Jiang, G. Pang, M. Wu, and L. Kuang, “An improved K-nearest-neighbor algorithm for text categorization,” Expert Syst. Appl., vol. 39, no. 1, pp. 1503– 1509, Jan. 2012.
    22. J. Zhu, C. Xu, and H. Wang, “Sentiment classification using the theory of ANNs,” J. China Univ. Posts Telecommun., vol. 17, pp. 58–62, Jul. 2010
    23. A. Sun, E.-P. Lim, and Y. Liu, “On strategies for imbalanced text classification using SVM: A comparative study,” Decis. Support Syst., vol. 48, no. 1, pp. 191–201, Dec. 2009.
    24. Q. Ye, Z. Zhang, and R. Law, “Sentiment classification of online reviews to travel destinations by supervised machine learning approaches,” Expert Syst. Appl., vol. 36, no. 3, pp. 6527–6535, Apr. 2009.

Recent Article