Open Access Journal

ISSN : 2394-2320 (Online)

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

Open Access Journal

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

ISSN : 2394-2320 (Online)

Reference :

    1. Agouris, P., Carswell, J. and Stefanidis, A., 1999. An environment for content-based image retrieval from large spatial databases. ISPRS Journal of Photogrammetry and Remote Sensing 54(4), pp. 263 – 272.
    2. Babaee, M., Rigoll, G. and Datcu, M., 2013. Immersive Interactive Information Mining with Application to Earth Observation Data Retrieval. In: Availability, Reliability, and Security in Information Systems and HCI, Lecture Notes in Computer Science,Vol. 8127, Springer Berlin Heidelberg, pp. 376– 386.
    3. Bifet, A., 2013. Mining big data in real time. Informatica (Slove-nia) 37(1), pp. 15–20.
    4. Chang, C.-C. and Lin, C.-J., 2011. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, pp. 27:1–27:27
    5. Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X. and Gao, W., 2010. WLD: A Robust Local Image Descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence32(9), pp. 1705–1720.
    6. Costache, M., Maitre, H. and Datcu, M., 2006. Categorization based relevance feedback search engine for earth observation images repositories. In: IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006.,pp. 13 –16.
    7. Cui, S.,Dumitru, C. and Datcu, M., 2013a. RatioDetector-Based Feature Extraction for Very High Resolution SAR Image Patch Indexing. IEEE Geoscience and Remote Sensing Letters 10(5), pp. 1175–1179.
    8. Cui, S., Dumitru, O. and Datcu, M., 2013b. Semantic annotation in earth observation based on active learning. International Journal of Image and Data Fusion pp. 1–23.
    9. Datcu, M., Daschiel, H., Pelizzari, A.Quartulli, M., Galoppo, A. Colapicchioni, A., Pastori, M., Seidel, K., Marchetti, P. and D’Elia, S., 2003. Information mining in remote sensing image archives: system concepts. IEEE Transactions on Geo science and Remote Sensing 41(12), pp. 2923 – 2936.
    10. de Oliveira, M. F. and Levkowit, H., 2003. From visual data exploration to visual data mining: a survey. IEEE Trans. Visual. Comput. Graphics 9(3), pp. 378–394. [11]DLR, 2007. TerraSAR-X, Ground Segment, Level 1b Product Data Specification, TX-GS-DD-3307. http://sss.terrasarx.dlr.de/pdfs/TX-GS-DD-3307.pdf.
    11. Espinoza-Molina, D. and Datcu, M., 2013. EarthObservation Image Retrieval Based on Content, Semantics, and Metadata.IEEE Transactions on Geoscience and Remote Sensing 51(11), pp. 5145–5159.
    12. Espinoza-Molina, D., Datcu, M., Teleaga, D. and Balint, C.,2014. Application of visual data mining for earth observation use cases. In: ESA-EUSC-JRC 2014 - 9th Conference on Image Information Mining Conference: The Sentinels Era, pp. 111–114.
    13. Fan, W. and Bifet, A., 2013. Mining big data: Current status, and forecast to the future. SIGKDD Explor. Newsl. 14(2), pp. 1–5.
    14. Keim, D., Panse, C., Sips, M. and North, S., 2004. Visual data mining in large geospatial point sets. IEEE Comput. Graph. Appl.24(5), pp. 36–44.

Recent Article