Open Access Journal

ISSN : 2394-2320 (Online)

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

Open Access Journal

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

ISSN : 2394-2320 (Online)

Reference :

    1. Reiss, Charles, John Wilkes, and Joseph L. Hellerstein. "Google cluster-usage traces: format+ schema." Google Inc., White Paper (2011): 1-14.
    2. C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M.Kozuch, “ Heterogeneity and dynamicity of clouds at scale: Google trace analysis,” in Proceedings of the Third ACM Symposium on Cloud Computing. ACM, 2012, p. 7.
    3. A. E. C. Cloud, “Web page at http://aws. amazon. com/ec2,”
    4. R. Bryant, A. Tumanov, O. Irzak, Scannell, K. Joshi, M. Hiltunen, A. Lagar-Cavilla, and E. De Lara, “Kaleidoscope: cloud microelasticity via vm state coloring,” in Proceedings of the sixth conference on Computer systems. ACM, 2011, pp. 273–286.
    5. H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “Agile: Elastic distributed resource scaling for infrastructure as a service,” in Proc. of the USENIX International Conference on Automated Computing (ICACAZ´13). San Jose, CA, 2013.
    6. A. Cassandra, “Apache cassandra,” 2013.
    7. T. Clark, “Rightscale,” 2010
    8. J. Hamilton, “Cooperative expendable micro-slice servers (cems): low cost, low power servers for internetscale services,” in Conference on Innovative Data Systems Research CIDRA˘´09)(January 2009), 2009
    9. A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth, “Efficient provisioning of bursty scientific workloads on the cloud using adaptive elasticity control,” in Proceedings of the 3rd workshop on Scientific Cloud Computing Date.ACM, 2012, pp. 31–40.
    10. I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid computing 360-degree compared,” in Grid Computing Envi- ronments Workshop, 2008. GCE’08.IEEE, 2008, pp. 1–10.
    11. W. Wang, H. Chen, and X. Chen, “An availability aware virtual machine placement approach for dynamic scaling of cloud applications,” in Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic & Trusted Computing 9th International Conference on. IEEE, 2012, pp. 509–516.
    12. T. Redkar and T. Guidici, Windows Azure Platform. Springer, 2009.
    13. A. Singhai, S. Lim, and S. R. Radia, “The scalr framework for internet services,” in Proceedings of the 28th Fault-Tolerant Com- puting Symposium (FTCS-28), page (to appear), 1998.
    14. Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: elastic resource scaling for multi-tenant cloud systems,” in Proceedings of the 2nd ACM Symposium on Cloud Computing.ACM, 2011, p. 5.
    15. C. You and K. Chandra, “Time series models for internet data traffic,” in Local Computer Networks, 1999. LCN’99. Conference on. IEEE, 1999, pp. 164–171.
    16. P. J. Brockwell, Introduction to time series and forecasting. Taylor & Francis, 2002, vol. 1.
    17. C. Chatfield, The analysis of time series: an introduction.CRC press, 2013.
    18. P. A. Dinda and D. R. O’Hallaron, “Host load prediction using linear models,” Cluster Computing, vol. 3, no. 4, pp. 265–280, 2000.
    19. W. Fang, Z. Lu, J. Wu, and Z. Cao, “Rpps: A novel resource prediction and provisioning scheme in cloud data center,” in Services Computing (SCC), 2012 IEEE Ninth International Conference on. IEEE, 2012, pp. 609–616.
    20. J. Huang, C. Li, and J. Yu, “Resource prediction based on double exponential smoothing in cloud computing,” in Consumer Electronics, Communications and Networks (CECNet), 2012 2nd International Conf. on. IEEE, 2012, pp. 2056– 2060.
    21. A. Ali-Eldin, J. Tordsson, E. Elmroth, and M. Kihl, “Workload classification for efficient auto-scaling of cloud resources,” Technical Report, 2005.[Online]. Available: http://www8. cs. umue/research/uminf/reports/2013/013/part1.pdf, Tech. Rep., 2013.
    22. J. Geweke and C. Whiteman, “Bayesian forecasting,” Handbook of economic forecasting, vol. 1, pp. 3–80, 2006.
    23. S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta, “Modeling virtualized applications using machine learning tech- niques,” in ACM SIGPLAN Notices, vol. 47, no.7. ACM, 2012, pp. 3–14.
    24. L. Aranildo Rodrigues, P. S. de Mattos Neto, and T. Ferreira, “A prime step in the time series forecasting with hybrid methods: The fitness function choice,” in Neural Networks, 2009. IJCNN 2009. International Joint Conference on. IEEE, 2009, pp. 2703– 2710.

Recent Article