Open Access Journal

ISSN : 2394-2320 (Online)

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

Open Access Journal

International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)

Monthly Journal for Computer Science and Engineering

ISSN : 2394-2320 (Online)

Reference :

    1. J. C. Bezdek and R. J. Hathaway, “Convergence of alternatingoptimization,” J. Neural Parallel Scientific Comput., vol. 11, no. 4,pp. 351–368, 2003.
    2. C. C. Chang and C. J. Lin. (2004). LibBVM: A library for supportivetomachine[Online].available:http://www.csie.ntu.e du.tw/∼cjlin/libBVM/
    3. G. Carenini, R. T. Ng, and E. Zwart, “Multi-document summarizationof evaluative text,” in Proc. ACL, Sydney, NSW, Australia,2006, pp. 3–7.
    4. China Unicom 100 Customers iPhone User Feedback Report,2009.
    5. ComScore Reports Onlene available:http://www.comscore.com/Press_events/Press_rele ases, 2011.
    6. X. Ding, B. Liu, and P. S. Yu, “A holistic lexicon-based approachto opinion mining,” in Proc. WSDM, New York, NY, USA, 2008,pp. 231–240.
    7. G. Erkan and D. R. Radev,“LexRank: Graph-based lexical centralityas salience in text summarization,” J. Artif. Intell. Res., vol. 22,no. 1, pp. 457–479, Jul. 2004.
    8. O. Etzioniet al., “Unsupervised named-entity extraction from theweb: An experimental study,” J. Artif. Intell., vol. 165, no. 1, pp.91–134. Jun. 2005.
    9. A. Ghose and P. G. Ipeirotis,“Estimating the helpfulness andeconomic impact of product reviews: Mining text and reviewercharacteristics,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 10,pp. 1498–1512. Sept. 2010.
    10. V. Gupta and G. S. Lehal, “A survey of text summarizationextractive techniques,” J. Emerg. Technol. Web Intell., vol. 2, no. 3,pp. 258–268, 2010.
    11. W. Jin and H. H. Ho, “A novel lexicalized HMM-based learningframework for web opinion mining,” in Proc. 26th Annu. ICML,Montreal, QC, Canada, 2009, pp. 465–472.
    12. M. Hu and B. Liu, “Mining and summarizing customer reviews,”in Proc. SIGKDD, Seattle, WA, USA, 2004, pp. 168– 177.
    13. K. Jarvelin and J. Kekalainen, “Cumulated gain-based evaluationof IR techniques,” ACM Trans. Inform. Syst., vol. 20, no. 4,pp. 422–446, Oct. 2002.
    14. J. R. Jensen, “Thematic information extraction: Image classification,”in Introductory Digit. Image Process. pp. 236– 238. [15] K. Lerman, S. Blair-Goldensohn, and R. McDonald, “Sentimentsummarization: Evaluating
    15. F. Li et al., “Structure-aware review mining and summarization,”in Proc. 23rd Int. Conf. COLING, Beijing, China, 2010, pp. 653–661.
    16. C. Y. Lin, “ROUGE: A package for automatic evaluation ofsummaries,” in Proc. Workshop Text Summarization Branches Out,Barcelona, Spain, 2004, pp. 74–81.
    17. B. Liu, M. Hu, and J. Cheng, “Opinion observer: Analyzing andcomparing opinions on the web,” in Proc. 14th Int. Conf. WWW,Chiba, Japan, 2005, pp. 342–351.
    18. K.Manoj Kumar and M.Vikram, "Disclosure of User’s Profile in Personalized Search for Enhanced Privacy," International Journal of Applied Engineering Research (IJAER), Vol. 10, no. 16, pp. 36358-36363, 2015

Recent Article